

# Molecular Genetic Analysis of MSUD From India Reveals Mutations Causing Altered Protein Truncation Affecting the C-Termini of E1 $\alpha$ and E1 $\beta$

Murali D. Bashyam,<sup>1\*</sup> Ajay K. Chaudhary,<sup>1</sup> Manjari Sinha,<sup>2</sup> H.A. Nagarajaram,<sup>2</sup> A. Radha Rama Devi,<sup>3</sup> Leena Bashyam,<sup>3</sup> E. Chandrakanth Reddy,<sup>1</sup> and Ashwin Dalal<sup>3</sup>

<sup>1</sup>Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India <sup>2</sup>Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India <sup>3</sup>Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India

### ABSTRACT

Maple Syrup Urine Disease is a rare metabolic disorder caused by reduced/absent activity of the branched chain  $\alpha$ -Ketoacid dehydrogenase enzyme complex. Mutations in *BCKDHA*, *BCKDHB*, and *DBT*, that encode important subunits of the enzyme complex namely E1 $\alpha$ , E1 $\beta$ , and E2, are the primary cause for the disease. We have performed the first molecular genetic analysis of MSUD from India on nine patients exhibiting classical MSUD symptoms. *BCKDHA* and *BCKDHB* mutations were identified in four and five patients, respectively including seven novel mutations namely the *BCKDHA* c.1249delC, c.1312T>C, and c.1561T>A and the *BCKDHB* c.401T>A, c.548G>A, c.964A>G, and c.1065delT. The *BCKDHB* c.970C>T (p.R324X) mutation was shown to trigger nonsense mediated decay-based degradation of the transcript. Seven of the total 11 mutations resulted in perturbations in the E1 $\alpha$  or E1 $\beta$  C-termini either through altered termination or through an amino acid change; these are expected to result in disruption of E1 enzyme complex assembly. Our study has therefore revealed that *BCKDHA* and *BCKDHA* and *BCKDHB* mutations population. J. Cell. Biochem. 113: 3122–3132, 2012. © 2012 Wiley Periodicals, Inc.

KEY WORDS: MSUD; MUTATION; BCKDHA; BCKDHB; TRUNCATION

M aple Syrup Urine Disease (MSUD) is a rare autosomal recessive disorder caused due to malfunctioning of the branched chain  $\alpha$ -ketoacid dehydrogenase enzyme complex (BCKD) [Chuang et al., 2006]. BCKD is responsible for the oxidative decarboxylation of branched chain ketoacids, formed due to transamination of branched chain amino acids including leucine, isoleucine, and valine [Quental et al., 2008]. MSUD is an inborn error of metabolism and can be fatal if not treated; clinical symptoms including seizures, mental retardation, and coma are caused due to accumulation of branched chain amino acids [Nellis et al., 2003;

Chuang et al., 2006]. Patients are usually managed through diet control including reduced intake of branched chain amino acids [Snyderman et al., 1964].

BCKD is a large enzyme complex constituted by three catalytic components namely a multimeric core of dihydrolipoyl acyltransferase (E2) in the form of a homo 24-mer to which are bound multiple subunits of BCKD decarboxylase (E1) and the dihydrolipoamide dehydrogenase (E3) as well as two regulatory subunits namely BCKD kinase and BCKD phosphatase. The enzyme complex is located in the mitochondria and is coded by four unlinked genes.

| Additional supporting information may be found in the online version of this article.                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grant sponsor: Department of Biotechnology, Government of India.                                                                                                             |
| A. Radha Rama Devi's present address is Sandor Proteomics Pvt. Ltd., Hyderabad, India.                                                                                       |
| Leena Bashyam's present address is Genomics Facility, School of Life Sciences, Hyderabad Central University, Hyderabad, India.                                               |
| E. Chandrakanth Reddy's present address is Institute for Clinical Neurobiology, University of Würzburg, Würzburg,<br>Germany.                                                |
| *Correspondence to: Murali D. Bashyam, Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India. E-mail: bashyam@cdfd.org.in |
| Manuscript Received: 9 April 2012; Manuscript Accepted: 7 May 2012                                                                                                           |
| Accepted manuscript online in Wiley Online Library (wileyonlinelibrary.com): 16 May 2012                                                                                     |
| DOI 10.1002/jcb.24189 • © 2012 Wiley Periodicals, Inc.                                                                                                                       |

# 3122

| TABLE I. | BCKDHA | and | BCKDHB | PCR | Primer | Sequences |
|----------|--------|-----|--------|-----|--------|-----------|
|----------|--------|-----|--------|-----|--------|-----------|

|              | Primer                  | Annealing   |
|--------------|-------------------------|-------------|
| Gene/exon    | sequence                | temperature |
| A            |                         |             |
| BCKDHA_E1F   | CCATTTTCAGCACGGATTTT    | 60.0        |
| BCKDHA_E1R   | GTCTCCCACTCTTTTTCCCTTT  |             |
| BCKDHA_E2-3F | GTTATCCAAAGTGTCGCAGTGA  | 60.0        |
| BCKDHA_E2-3R | AACCCTCAGAACTCTATGGAACC |             |
| BCKDHA_E4F   | CCTCTGGCAGTTCTAAGCAGTC  | 60.0        |
| BCKDHA_E4R   | CACTACACTTTCTGGCCTTCAG  |             |
| BCKDHA_E5F   | GCTGGGCAGAGTCAGTCA      | 60.0        |
| BCKDHA_E5R   | AGAAGGCAGGCAAAAGAGC     |             |
| BCKDHA_E6F   | AGTGTGAATGAGTGTGAGTGC   | 60.0        |
| BCKDHA_E6R   | AAGTGCCAGACGCCACAG      |             |
| BCKDHA_E7F   | TCGTGCATGTTCCTTATCTCAGC | 57.5        |
| BCKDHA_E7R   | GTCAGTGCTGTGGGGGGTGCT   |             |
| BCKDHA_E8F   | CATCTCCCCCTTGCCTTTAT    | 60.0        |
| BCKDHA_E8R   | CACAGAGCCAGGACACACAT    |             |
| BCKDHA_E9F   | TAGCCTGCCCACTGCCCCATGT  | 56.0        |
| BCKDHA_E9R   | CCCAAACTCCAGGAAACAAA    |             |
| В            |                         |             |
| BCKDHB_E1F   | GCTGCATAGCCTGAGAATCC    | 58.5        |
| BCKDHB_E1R   | AATAAGCTGGGATGCAAGGA    |             |
| BCKDHB_E2F   | ATTTTGCCCCATTAACAAGC    | 60.0        |
| BCKDHB_E2R   | GCTACCACAATTCAGGCACA    |             |
| BCKDHB_E3F   | GACAGACCCTCACAACAAAGA   | 52.8        |
| BCKDHB_E3R   | GCGTTGGAAATGAAAAGGAA    |             |
| BCKDHB_E4F   | GACATTACTCTCATTTGCCAC   | 58.2        |
| BCKDHB_E4R   | GGAAGGGTAGCGGCAATACT    |             |
| BCKDHB_E5F   | AGGAGATTGGAAGGGAAGGA    | 58.5        |
| BCKDHB_E5R   | AACTGGGCATTGGATAGCAT    |             |
| BCKDHB_E6F   | AGCCCTTCTTAGCAGCGAGT    | 58.2        |
| BCKDHB_E6R   | GGCTAGATGAATTTTTCCCAAA  |             |
| BCKDHB_E7F   | TGCACAAGTGTCACCTCAGA    | 50.0        |
| BCKDHB_E7R   | GAAATTAGCATCAGTAGCACCA  |             |
| BCKDHB_E8F   | ACCTTCTACATGCCATCTTTGT  | 56.0        |
| BCKDHB_E8R   | GCCAAAGGTTTCAGGGAAAT    |             |
| BCKDHB_E9F   | ACCTGTCGAAAGCGAGTTGT    | 56.0        |
| BCKDHB_E9R   | TCTTCTGGAATTGGCATGTG    |             |
| BCKDHB_E10F  | AAAACTGGGATCATGCGAAC    | 52.8        |
| BCKDHB_E10R  | CGTTAATGTCAGGGGCACAT    |             |
|              |                         |             |

The E1 subunit, a thiamine pyrophosphate (TPP)-dependent decarboxylase, is a heterotetrameric complex with a subunit structure of  $\alpha 2\beta 2$ . Based on the affected loci, three MSUD subtypes have been proposed namely type Ia (mutated *BCKDHA* gene coding for the E1 $\alpha$  subunit), Ib (mutated *BCKDHB* gene coding for the E1 $\beta$ 

| TABLE IIA. Mutations Identified in MSUD | Patients |
|-----------------------------------------|----------|
|-----------------------------------------|----------|

subunit) and II (mutated *DBT* gene coding for the E2 subunit). Mutations are more common in *BCKDHA* and *BCKDHB* than in *DBT* [Nellis and Danner, 2001]. Since the E3 component is also a part of other mitochondrial enzyme complexes, clinical symptoms due to mutations in DBT are different from classical MSUD.

MSUD has been described from diverse ethnicities with an estimated frequency of 1:1,85,000 [Danner and Doering, 1998] and more than 100 mutations have been identified so far (HGMD; http://www.biobase-international.com/product/hgmd). In the current study, we have performed the first molecular genetic study of MSUD from the Indian population and identified seven novel mutations in the BCKDHA and BCKDHB genes in nine patients.

#### MATERIALS AND METHODS

#### PATIENTS

The study was approved by the institute ethics committee. Blood samples were collected from the patients, family members, and normal subjects following informed consent. All patients were from the South Indian state of Andhra Pradesh except family 9 that belonged to North India and were diagnosed based on classical symptoms and elevated plasma levels of branched chain amino acids. Detailed clinical features of each patient are given in Supplementary document S1.

#### MOLECULAR GENETIC ANALYSES

Genomic DNA was isolated from blood samples as per established protocols [Bashyam et al., 2004]. Mutations were identified by direct polymerase chain reaction-DNA sequencing as per standard protocols; primer sequences for each of the nine *BCKDHA* and 10 *BCKDHB* exons are given in Tables IA and IB. Each mutation was confirmed by bi-directional DNA sequencing. Fibroblast culture from skin biopsy of proband 5 and from a normal individual was established following informed consent and used to quantitate *BCKDHB* transcript levels as described in Supplementary Methods S1.

|                     |             |                       |          |               |               | Family   | status  |
|---------------------|-------------|-----------------------|----------|---------------|---------------|----------|---------|
| Family <sup>a</sup> | Gender/age  | Mutation <sup>b</sup> | Location | Mutation type | Consanguinity | Mother   | Father  |
| BCKDHA              |             |                       |          |               |               |          |         |
| 01                  | F/1 year    | c.1036C>T (p.R346C)   | Exon 8   | Missense      | Present       | Carrier  | Carrier |
| 02                  | F/8 months  | c.1249delC            | Exon 9   | Deletion      | NA            | NA       | NA      |
| 03                  | F/10 months | c.1312T>C (p.Y438H)   | Exon 9   | Missense      | Absent        | Carrier  | Carrier |
| 04                  | F/8 months  | c.1561T>A             | 3'-UTR   | 3'-UTR        | NA            | Normal   | Carrier |
| BCKDHB              |             |                       |          |               |               |          |         |
| 05                  | M/20days    | c.853C>T (p.R285X)    | Exon 8   | Nonsense      | Present       | Carrier  | Carrier |
| 06                  | F/25 days   | c.970C>T (p.R324X)    | Exon 9   | Nonsense      | Present       | NA       | NA      |
| 07                  | F/1 month   | c.1016C>T (p.S339L)   | Exon 9   | Missense      | Present       | Carrier  | Carrier |
| 08                  | F/5 days    | c.548G>A (p.R183Q);   | Exon 5;  | Missense;     | Present       | NA       | NA      |
|                     |             | c.964A>G (p.T322A)    | Exon 9   | Missense      |               |          |         |
| 09                  | M/9 days    | c.401T>A (p.I134N);   | Exon 4;  | Missense;     | Absent        | Carrier; | Normal; |
|                     |             | c.1065delT            | Exon 10  | Deletion      |               | Normal   | Carrier |

cDNA and amino acid nomenclature considers "A" of translation initiation codon (ATG) as the first nucleotide and ATG/methionine as the first codon/amino acid, respectively. Reference sequences: *BCKDHA*–GenBank accession no. NM\_000709.3; *BCKDHB*–GenBank accession no. NM\_000056.3. <sup>a</sup>Mutations in family 1, 2, 3, 5, 6, and 7 were homozygous, in family 4 was heterozygous and in family 8 and 9 were compound heterozygous.

<sup>b</sup>Novel mutations are shown in bold face; F, female; M, male; UTR, untranslated region; NA, not available.

| Mutation <sup>a</sup> | Domain                       | Structural explanation                                                                                        | Gribskov's<br>score | Predicted<br>mutation<br>status by<br>Hansa | Percent solvent<br>accessibility<br>(monomer-complex) <sup>e</sup> |
|-----------------------|------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------|--------------------------------------------------------------------|
| BCKDHA                | — h                          |                                                                                                               |                     |                                             |                                                                    |
| p.R346C               | E1_dh                        | Destabilization of phosphorylation loop region                                                                | +5.00 to $-3.00$    | Disease                                     | -                                                                  |
| p.Y438H               | E1_dh <sup>b</sup>           | Disruption of side chain-side chain H-bonds and hence $\alpha-\beta'$ and $\alpha'-\beta$ associations        | +7.00 to +2.00      | Disease                                     | 25.18-4.11 α-β'/α'-β                                               |
| BCKDHB                |                              |                                                                                                               |                     |                                             |                                                                    |
| p.I134N               | Transket_pyr <sup>c</sup>    | Destabilization of the helical H-bond and hence<br>destabilization of helix                                   | +4.00 to -3.00      | Disease                                     | 2.10–0.00 $\alpha$ – $\beta/\alpha'$ – $\beta'$                    |
| p.R183Q               | Transket_pyr <sup>c</sup>    | Loss of salt bridges; destabilization of beta sheet                                                           | +5.00 - 1.00        | Disease                                     | -                                                                  |
| p.T322A               | Transketolase_C <sup>d</sup> | Loss of proton donor for H-bonds involving neighboring polar side chain; destabilization of β subunit         | +5.00-0.00          | Disease                                     | -                                                                  |
| p.S339L               | Transketolase_C <sup>d</sup> | Loss of proton donor for H-bond involving neighboring polar side chain; disruption of E1 $\beta$ dimerization | 3.79 to -1.93       | Disease                                     | 11.92-0.54 β-β'                                                    |

#### TABLE IIB. Evaluation of Missense Mutations Identified in MSUD Patients

<sup>a</sup>Novel mutations are shown in bold face.

<sup>b</sup>Dehydrogenase E1 component.

<sup>c</sup>Transketolase, pyrimidine binding domain.

<sup>d</sup>Transketolase, C-terminal domain.

<sup>e</sup>Refer to Supplementary Table S2.



Fig. 1. Novel *BCKDHA* and *BCKDHB* mutations detected in this study among Indian MSUD patients. A: c.1249delC (family 2); (B) c.1312T>C (p.Y438H from family 3); (C) c.1561T>A (family 4) (all in *BCKDHA*); (D) c.548G>A (p.R183Q from family 8); (E) c.964A>G (p.T322A from family 8); (F) c.401T>A (p.I134N from family 9) and (G) c.1065delT (family 9) (all in *BCKDHB*). For each, electropherogram showing the mutation is on the left and the one showing the normal sequence is on the right. For G, electropherogram on the left represents the patient's heterozygous mutant sequence while the one in the middle and the right represent mutant and normal sequence of cloned PCR products, respectively. The mutated residue is indicated by an arrow; the deleted residues in A and G are indicated in the normal sequence. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/journal/jcb]



#### SEQUENCE AND STRUCTURE ANALYSIS

Sequence analysis of each mutant amino acid residue was performed essentially as described earlier [Bashyam et al., 2012]; details are given in Supplementary Methods S1.

#### RESULTS

Mutations detected in the nine affected families are given in Table IIA. Four families harbored mutations in BCKDHA while the other five harbored mutations in BCKDHB. Three of the four BCKDHA families harbored novel mutations (Fig. 1 and Table IIA); homozygous mutations in three (family 1-3; Table IIA) and heterozygous in one (family 4; Table IIA). We could not detect the second mutation in proband of family 4. Since there is no earlier evidence for autosomal dominant mode of inheritance in MSUD and the father of the proband harboring the c.1561T>A heterozygous mutation was clinically normal, it is likely that the second mutation was inherited from the mother and is expected to be located in intronic regions. Among the five BCKDHB families, three harbored homozygous mutation (families 5, 6, and 7; Table IIA). Probands from families 8 and 9, exhibited compound heterozygosity and harbored novel mutations (Fig. 1 and Table IIA). Overall, we identified seven novel mutations out of the total 11 mutations identified.

Multiple sequence alignments of E1 $\alpha$  and E1 $\beta$  with their respective homologues (Fig. 2A,B) as well as analysis of the position-specific profile Gribskov's scores (Table IIB) confirmed high evolutionary conservation of all affected residues; substitutions at these positions are therefore expected to be unfavorable. E1 $\alpha$  and E1 $\beta$  regions located in the interface of the multimeric enzyme complex are shown in Tables IIIA and IIIB, respectively. More importantly, the recently developed web-server Hansa (hansa.cdfd.org.in:8080) [Acharya and Nagarajaram, 2012; Bashyam et al., 2012] predicted all missense mutations as "Disease" (Table IIB).

The E1 $\alpha$  R346C mutation is expected to disrupt the hydrogen bonding network destabilizing the structure of the phosphorylation loop [Li et al., 2004]. The p.Y438H mutation appears to preclude Hbond interaction of Y438 with side chains of E1 $\alpha$  H430 and E1 $\beta$ D378 (Fig. 3A) which in turn is expected to destabilize the structure

| TABLE III. | Amino Acid Re          | sidues of $\alpha/\alpha'$ | (A) and $\beta/\beta'$ | (B) Buried Due |
|------------|------------------------|----------------------------|------------------------|----------------|
| to Subunit | Association $\alpha^2$ | $\beta^2$                  |                        |                |

|                                |                              | Percent solvent accessible area of residues |                                          |  |
|--------------------------------|------------------------------|---------------------------------------------|------------------------------------------|--|
| Amino acid<br>residue position | Residue<br>type              | In the complex $\alpha^2\beta^2$            | In the isolated $\alpha/\alpha'$ subunit |  |
| Ą                              |                              |                                             |                                          |  |
| 52                             | PRO*                         | 16.01                                       | 19.22                                    |  |
| 53                             | GLN*                         | 43.85                                       | 51.49                                    |  |
| 54                             | PHE <sup>*</sup>             | 3.66                                        | 44.91                                    |  |
| 55                             | PRO*                         | 23.28                                       | 43.86                                    |  |
| 56                             | GLY*                         | 1.42                                        | 23.5                                     |  |
| 57                             | ALA*                         | 5                                           | 23.16                                    |  |
| 58                             | SER*                         | 15                                          | 33.51                                    |  |
| 59                             | ALA*                         | 4.68                                        | 22.31                                    |  |
| 50                             | GLU"                         | 32.24                                       | 43.52                                    |  |
|                                | PHE                          | 19.31                                       | 47.52                                    |  |
| 52                             | ILE"                         | 13.13                                       | 36.62                                    |  |
| 53                             | ASP<br>LVC*                  | 12.58                                       | 36.49                                    |  |
| 04<br>° F                      | LIS<br>LEU*                  | 29.16                                       | 38.23                                    |  |
| 05<br>C                        | LEU<br>CLU*                  | 13.08                                       | 48.19                                    |  |
|                                | GLU<br>DUE*                  | 24.47                                       | 28.84                                    |  |
| 57<br>50                       | ГП <u>С</u><br>11 <b>Б</b> * | 10.62                                       | 50.01                                    |  |
| 50                             | GI N*                        | 38.38                                       | 45.35                                    |  |
| 70                             | PRO*                         | 6 78                                        | 30.03                                    |  |
| 70<br>77                       | VAI*                         | 15.05                                       | 10.55                                    |  |
| 13                             | U F*                         | 48 57                                       | 56.05                                    |  |
| 74                             | SER*                         | 16 72                                       | 20.05                                    |  |
| 75                             | GLY*                         | 3.02                                        | 7 18                                     |  |
| 76                             | ILF*                         | 8.09                                        | 17.84                                    |  |
| 77                             | PRO*                         | 13.11                                       | 35.94                                    |  |
| 78                             | ILE*                         | 0.03                                        | 29.49                                    |  |
| 79                             | TYR*                         | 0.03                                        | 15.21                                    |  |
| 30                             | ARG*                         | 17.23                                       | 36.91                                    |  |
| 39                             | ILE*                         | 17.76                                       | 23.98                                    |  |
| 90                             | ASN*                         | 8.23                                        | 21.07                                    |  |
| 92                             | SER*                         | 29.35                                       | 29.38                                    |  |
| 93                             | GLU*                         | 8.84                                        | 18.19                                    |  |
| 129                            | SER***                       | 11.16                                       | 26.51                                    |  |
| 130                            | PHE***                       | 11.53                                       | 14.95                                    |  |
| 137                            | GLU                          | 1.54                                        | 1.6                                      |  |
| 153                            | LEU**                        | 2.82                                        | 8.91                                     |  |
| 155                            | PHE **                       | 0.51                                        | 4.36                                     |  |
| 156                            | GLY                          | 0.7                                         | 0.98                                     |  |
| 157                            | GLN                          | 2.02                                        | 2.08                                     |  |
| 158                            | TYR***                       | 4.45                                        | 14.04                                    |  |
| 159                            | ARG                          | 13.23                                       | 20.41                                    |  |
| 177                            | GLN***                       | 2.92                                        | 3.23                                     |  |
| 178                            | CYS***                       | 0.37                                        | 1.45                                     |  |
| 179                            | TYR***                       | 4                                           | 6.45                                     |  |
| 180                            | GLY***                       | 0                                           | 4.27                                     |  |
| 185                            | LEU**                        | 34.03                                       | 48.59                                    |  |
|                                |                              |                                             | $(C, \dots, t, \dots, l)$                |  |

(Continued)

Fig. 2. (*Overleaf*) A: Multiple sequence alignment (MSA) of human *BCKDHA* with homologues from other species. The MSA was performed as described in the Materials and Methods Section. The position of each mutated residue is shown by an arrow. amino acid positions corresponding to the human sequence are indicated above each alignment. The homologues are as follows: gi|258645170|ref|NP\_000700.1|, *Homo sapiens*; gi|77736548|ref|NP\_036914.1|, *Rattus norvegicus*; gi|183396774|ref|NP\_031559.3|, *Mus musculus*; gi|148727347|ref|NP\_001092034, *Pan troglodytes*; gi|62510814|sp|Q8HXY4.1|ODBA\_M, *Macaca fascicularis*; gi|297277135|ref|XP\_001101959, *Macaca mulatta*; gi|332242782|ref|XP\_003270562, *Nomascus leucogenys*; gi|296233895|ref|XP\_002762220, *Callithrix jacchus*; gi|73947481|ref|XP\_866392.1|, *Canis familiaris*; gi|201776619|ref|XP\_002923727, *Ailuropoda melanoleuca*; gi|338710481|ref|XP\_001500344, *Equus caballus*; gi|187607469|ref|NP\_001119816, *Ovis aries*; gi|27806229|ref|XP\_001372218, *Monodelphis domestica*; gi|327276395|ref|XP\_003222955, *Anolis carolinensis*; gi|66773104|ref|NP\_001019590.1, *Danio rerio*; gi|195395472|ref|XP\_002056360, *Drosophila virilis*. B: Multiple sequence alignment (MSA) of human *BCKDHB* with homologues from other species. The MSA was performed as described in the Materials and Methods Section. The position of each mutated residue is shown by an arrow. amino acid positions corresponding to the human sequence are indicated above each alignment. The homologues are as follows: gi|4557353|ref|NP\_000047.1|, *Homo sapiens*; gi|162416262|sp|Q6P3A8.2|, *Mus musculus*; gi|348578059|ref|XP\_003474801, *Caria porcellus*; gi|301761846|ref|XP\_002916344, *Ailuropoda melanoleuca*; gi|348578059|ref|XP\_003474801, *Caria porcellus*; gi|301761846|ref|XP\_002916344, *Ailuropoda melanoleuca*; gi|348532057|ref|XP\_003453523, *Oreochromis niloticus*; gi|18285569|gb|ACH85323.1|, *Salmo salar*; gi|115502434|sp|P21839.2|, *Bos tarus*; gi|32218346|ref|XP\_00321846|ref|XP\_003404146, *Loxodonta africana*.

## TABLE III. (Continued)

TABLE III. (Continued)

|                                |                                          | Percent solvent accessible<br>area of residues |                                    |            |
|--------------------------------|------------------------------------------|------------------------------------------------|------------------------------------|------------|
| Amino acid<br>residue position | Residue<br>type                          | In the complex $\alpha^2\beta^2$               | In the<br>isolated<br>α/α' subunit | Am<br>resi |
| 186                            | GLY**                                    | 4.5                                            | 13.41                              | 287        |
| 187                            | LYS**/***                                | 15.06                                          | 21.23                              | 289        |
| 188                            | ARG**/***                                | 0.05                                           | 8.26<br>30.16                      | 290<br>291 |
| 190                            | GLN**/***                                | 1.67                                           | 21.28                              | 292        |
| 191                            | MET***<br>PRO***                         | 1.98                                           | 29.46                              | 293        |
| 192                            | GLY**                                    | 3.03                                           | 2.76                               | 294<br>295 |
| 197                            | CYS**                                    | 2.91                                           | 5.08                               | 296        |
| 198                            | LYS**<br>1115**                          | 36.96                                          | 58.16                              | 297        |
| 201                            | PHE**                                    | 0.38                                           | 1.17                               | 301        |
| 203                            | VAL**                                    | 1.12                                           | 16.99                              | 308        |
| 204                            | THR**<br>11 E**                          | 2.81                                           | 23.08                              | 309        |
| 205                            | SER**/***                                | 0.91                                           | 14.27                              | 313        |
| 207                            | SER***                                   | 0.48                                           | 14.58                              | 316        |
| 208                            | PRO**/***<br>1 FU***                     | 0.37                                           | 26.43                              | 324        |
| 205                            | THR**                                    | 0.41                                           | 12.68                              | 326        |
| 212                            | GLN**                                    | 3.28                                           | 4.45                               | 329        |
| 214<br>215                     | PRO**<br>GLN**                           | 0.06                                           | 12.94                              | 330        |
| 217                            | VAL**                                    | 0.02                                           | 1.2                                | 332        |
| 218                            | GLY**                                    | 0                                              | 13.16                              | 358        |
| 219                            | ALA<br>TYR**                             | 2.82                                           | 7.89<br>24.43                      | 363<br>402 |
| 222                            | ALA**                                    | 3.14                                           | 19.08                              | 403        |
| 223                            | ALA**                                    | 3.36                                           | 3.78                               | 404        |
| 224                            | ARG**                                    | 21.72                                          | 55.67                              | 405        |
| 230                            | ARG**                                    | 18.36                                          | 22.5                               | 408        |
| 237                            | GLY                                      | 0.34                                           | 3.35                               | 409        |
| 238                            | GLY***                                   | 0.05                                           | 4.11                               | 410        |
| 240                            | ALA***                                   | 0.46                                           | 1.72                               | 412        |
| 241                            | ALA*<br>SEP*/***                         | 0.15                                           | 1.79                               | 413        |
| 242                            | GLU*/***                                 | 1.87                                           | 21.68                              | 414        |
| 244                            | GLY*/**/***                              | 0.1                                            | 17.84                              | 417        |
| 245                            | ASP**/***<br>AI A*                       | 3.06                                           | 13.59                              | 419        |
| 240                            | HIS*/**                                  | 0.95                                           | 34.9                               | 422        |
| 248                            | ALA*/**                                  | 0.08                                           | 10.27                              | 423        |
| 251                            | ASN / **<br>PHE*/**                      | 0.37                                           | 17.97                              | 426<br>427 |
| 254                            | ALA*                                     | 1.7                                            | 6.88                               | 429        |
| 255                            | THR*/**                                  | 2.12                                           | 28.15                              | 430        |
| 256                            | GLU*                                     | 20.57                                          | 26.75                              | 431        |
| 258                            | CYS**                                    | 0                                              | 0.01                               | 434        |
| 265                            | ARG                                      | 1.62                                           | 7.03                               | 437        |
| 267                            | ASN*                                     | 2.12                                           | 7.7                                | 439        |
| 268                            | GLY*                                     | 0.15                                           | 6.7                                | 440        |
| 269                            | TYR*<br>41 4***                          | 15.94                                          | 21.58                              | 443        |
| 270                            | ILE***                                   | 21.8                                           | 55.67                              |            |
| 272                            | SER***                                   | 8.18                                           | 26.47                              |            |
| 273                            | THR <sup>***</sup><br>PRO <sup>***</sup> | 1.19                                           | 10.92                              |            |
| 275                            | THR*                                     | 2.17                                           | 6.89                               |            |
| 276                            | SER*                                     | 20.61                                          | 20.87                              |            |
| 277<br>278                     | GLU"/"""<br>GLN*/***                     | 11.34                                          | 35<br>10 34                        | Am         |
| 279                            | TYR*/***                                 | 3.12                                           | 12.69                              | resi       |
| 280                            | ARG*                                     | 26.13                                          | 59.71                              | n          |
| 281<br>282                     | GLY*<br>ASP*                             | 0.91                                           | 11.64                              | 89<br>8    |
| 283                            | GLY*                                     | 0.18                                           | 2.46                               | 90         |
| 286                            | ALA*                                     | 7.96                                           | 12.46                              | 92         |

|                                |                   | Percent sol<br>area o            | Percent solvent accessible<br>area of residues |  |  |
|--------------------------------|-------------------|----------------------------------|------------------------------------------------|--|--|
| Amino acid<br>residue position | Residue<br>type   | In the complex $\alpha^2\beta^2$ | In the<br>isolated<br>α/α' subunit             |  |  |
| 287                            | ARG*              | 3.84                             | 21.58                                          |  |  |
| 289                            | PRO*              | 8.03                             | 25.03                                          |  |  |
| 290                            | TYR*              | 2.17                             | 22.1                                           |  |  |
| 292                            | GLY*              | 4.4                              | 16.99                                          |  |  |
| 293                            | ILE*              | 0.05                             | 0.79                                           |  |  |
| 294<br>295                     | SER*              | 4.27                             | 26.47                                          |  |  |
| 296                            | ILE*              | 1.71                             | 21.91                                          |  |  |
| 297                            | ARG*              | 0.05                             | 4.34                                           |  |  |
| 299<br>301                     | ASP*<br>ASN*      | 0.25                             | 4.92                                           |  |  |
| 308                            | ASN*              | 5.37                             | 8.19                                           |  |  |
| 309                            | ALA*              | 0                                | 2.26                                           |  |  |
| 312                            | GLU*              | 12.36                            | 22.59                                          |  |  |
| 316                            | ARG*              | 14.49                            | 17.78                                          |  |  |
| 324                            | PHE*              | 0                                | 5.19                                           |  |  |
| 325                            | LEU*              | 0.09                             | 0.27                                           |  |  |
| 326                            | ILE<br>MFT*       | 0.01                             | 0.33                                           |  |  |
| 330                            | THR*              | 0.05                             | 2.86                                           |  |  |
| 331                            | TYR*              | 19.54                            | 38.91                                          |  |  |
| 332                            | ARG<br>ASP*       | 51.01                            | 51.11                                          |  |  |
| 363                            | ARG*              | 1.91                             | 1.97                                           |  |  |
| 402                            | LYS***            | 11.24                            | 16.48                                          |  |  |
| 403                            | PRO***            | 1.5                              | 4.81                                           |  |  |
| 404 405                        | PRO***            | 3.01                             | 10.86                                          |  |  |
| 407                            | LEU***            | 17.59                            | 18.84                                          |  |  |
| 408                            | LEU**/***         | 0                                | 34.38                                          |  |  |
| 409                            | SER**             | 0.17                             | 5.44<br>9.89                                   |  |  |
| 411                            | ASP**             | 4.32                             | 21.72                                          |  |  |
| 412                            | VAL**/***         | 0.84                             | 28.45                                          |  |  |
| 413                            | GIN**             | 3.51                             | 37.63                                          |  |  |
| 415                            | GLU**             | 25.48                            | 34.72                                          |  |  |
| 417                            | PR0**             | 6.52                             | 14.96                                          |  |  |
| 419                            | GLN**/***         | 12.35                            | 37.4                                           |  |  |
| 422                            | LYS**             | 29.84                            | 37.08                                          |  |  |
| 423                            | GLN***            | 6.29                             | 29.65                                          |  |  |
| 426                            | SER***            | 11.45                            | 14.04                                          |  |  |
| 427                            | ARG***            | 43.8                             | 47.23                                          |  |  |
| 430                            | HIS***            | 4.57                             | 21.33                                          |  |  |
| 431                            | LEU***            | 7                                | 8.65                                           |  |  |
| 433<br>434                     | TYR***            | 27.17                            | 27.8                                           |  |  |
| 437                            | HIS***            | 23.07                            | 38.14                                          |  |  |
| 438#                           | TYR***            | 4.11                             | 25.18                                          |  |  |
| 439                            | PRO***<br>1 EU*** | 12.19                            | 22.27                                          |  |  |
| 440                            | PHE***            | 4.97                             | 19.92                                          |  |  |
|                                |                   | Percent solvent accessible areas |                                                |  |  |
|                                | D                 | In the                           | In the                                         |  |  |
| Amino acid                     | Residue           | complex                          | isolated                                       |  |  |
| residue position               | type              | $\alpha^2 \beta^2$               | $\beta/\beta'$ subunit                         |  |  |
| В                              |                   |                                  |                                                |  |  |
| 89                             | PRO               | 32.95                            | 36.2                                           |  |  |
| 92                             | VAL**             | 1.16                             | 20.38                                          |  |  |
|                                |                   |                                  | (Continued)                                    |  |  |

(Continued)

#### TABLE III. (Continued)

TABLE III. (Continued)

| Amino acid<br>residue positionResidue<br>type $complex\alpha^2 \beta^2\beta/\beta' subunit96GLU***973.834.1697ASP***1.1316.299ALA**1.665.666.37100PHE***1.1316.4103VAL**1.1315.0420.75111AKG***2.0.1924.21116LYS**1.7.8344.19117ASP***1.7.8310.66118ARG**7.577.57119PHE***0.3063.69121ASN*7***1.51.96122THR*7***1.50.02123PRO*1***0.020.66.2124LEU**0.151.7.11126GLV***00121GLY***00122PHE**0.160.7.41123PGLY***00124GLY***00135GLY**00136ILE**0.64410.46137GLY***00138VAL**01.1.48139THR**1.4.423.9.66141ALA**04.89151ASP'/***00152PTR**01.7.3154PHE**00155PRO'/***02.1.3154PHE**00155PRO'/***02.1.3154PHE**00.2.1.3155PRO'/***02.3.5<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                    | Percent solvent accessible areas |                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|----------------------------------|------------------------------------|--|
| 96 $GLU^{**}$ $3.83$ $4.16$ 97 $ASP^{**}$ $1.13$ $16.2$ 99 $ALA^{***}$ $5.66$ $6.37$ 100 $PHE^{***}$ $37.1$ $46.41$ 103 $VAL^{***}$ $15.04$ $20.75$ 111 $AKG^{**}$ $20.19$ $24.21$ 116 $LYS^{**}$ $44.19$ $44.2$ 117 $ASP^{**}$ $17.83$ $30.68$ 121 $ASN^{*}/^{***}$ $0.36$ $7.34$ 122 $THR^{*}/^{***}$ $0.36$ $7.34$ 123 $PR0^{*}/^{***}$ $0.02$ $36.62$ 124 $LEU^{***}$ $0.15$ $17.11$ 125 $CYS^{*}/^{**}$ $0$ $1.14$ 126 $GLV^{**}$ $0$ $1.148$ 127 $GLN^{**}/^{**}$ $0.864$ $0.41$ 128 $GLY^{**}$ $0$ $1.148$ 129 $ILE^{**}$ $0.64$ $0.41.48$ 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amino acid<br>residue position | Residue<br>type    | In the complex $\alpha^2\beta^2$ | In the<br>isolated<br>β/β' subunit |  |
| 97 $ASP^{***}$ 1.13       16.2         99 $ALA^{***}$ 5.66       6.37         100       PHE***       37.1       46.41         103 $VAL^{***}$ 20.19       24.21         116       LYS**       44.19       44.2         117 $ASP^{**}$ 17.83       30.68         118 $AKG^{**}$ 7.57       11.51         120       PHE**       3.06       13.69         121 $ASN^{*}/^{***}$ 0.16       22.26         124       LEU***       0.02       36.62         125       CYS*'/***       0.15       17.11         126       GLU***       0.15       17.11         127       GLN'/*'**       0.16       0.83         129       IE*       0.18       0.83         131       GLY***       0       1.44         132       PH***       0.03       30.62         134'       IE**       0.64       10.46         132       PH***       0       1.14         134       GLY***       0       1.43         136       GLY***       0       1.73                                                                                                                                                                                                                                                                                                                                                                                         | 96                             | GLU***             | 3.83                             | 4.16                               |  |
| 99 $ALA^{***}$ 5.66       6.37         100       PHE***       37.1       46.41         103       VAI.***       15.04       20.75         111       ARG***       20.19       24.21         116       LYS**       44.19       44.2         117       ASP**       17.83       30.68         118       ARG**       7.57       11.51         120       PHE***       3.06       7.34         121       ASN**/***       0.36       7.34         123       PRO**/***       0.36       7.34         124       LEU***       5.65       46.51         125       CYS**/**       0.15       17.1         126       GLN***       0.8       0.85         127       GLN*/**       0       10.14         128       GLY**       0       11.44         129       ILE**       0.46       10.46         131       GLY**       0       11.43         136       ILE*       0.64       10.46         137       HE*       0.64       10.46         138       VAL*       5.3       148         139                                                                                                                                                                                                                                                                                                                                           | 97                             | ASP***             | 1.13                             | 16.2                               |  |
| 100 $PHE^{***}$ 37.1       46.41         103 $VAL^{***}$ 15.04       20.75         111 $ARG^{**}$ 20.19       24.21         116 $LYS^{**}$ 44.19       24.21         117 $ASP^{**}$ 17.83       30.68         118 $ARG^{**}$ 7.57       11.51         120 $PHE^{**}$ 3.06       13.69         121 $ASN^{*}/^{***}$ 0.36       7.34         122 $THR^{**}/^{***}$ 0.36       7.34         123 $PRO^{*}/*^{***}$ 0.02       36.62         124 $EU^{***}$ 0.15       17.11         126 $GIU^{***}$ 0.15       17.11         127 $GLN^{*}/^{**}/^{***}$ 0.16       0.83         129 $ILE^{**}$ 0.18       0.83         131 $GLY^{**}$ 0       1.148         132 $PHE^{**}$ 0.30       30.62         134' $ILE^{**}$ 0.64       10.46         138 $VAL^{**}$ 5.3       144         139 $THR^{**}$ 14.42       33.96 <tr< td=""><td>99</td><td>ALA***</td><td>5.66</td><td>6.37</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                               | 99                             | ALA***             | 5.66                             | 6.37                               |  |
| 103 $\forall R.I^{++}$ 15.04       20.19       24.21         116       LYS**       44.19       44.2         117       ASP**       17.83       30.68         118       ARG**       7.57       11.51         120       PHE**       3.08       13.69         121       ASN*'/**       1.96       22.26         122       THR*/***       0.02       36.62         123       PRO*/***       0.15       1.7.11         126       GLV**       0.15       1.7.11         127       GLN*/***       0       10.14         129       ILE**       0.18       0.64         121       GLY**       0       1.14         122       PHE**       0.64       10.44         129       ILE**       0.64       10.46         131       GLY**       0       1.148         132       PHE*       0.33       30.62         134''       ILE*       0.64       10.46         138       VAL**       5.3       14.8         139       THR**       14.42       33.96         134       GLY**       0       2.1.73                                                                                                                                                                                                                                                                                                                                 | 100                            | PHE***             | 37.1                             | 46.41                              |  |
| Info         INS**         Interpretation           116         INS**         44.19         44.2           117         ASP**         17.83         30.66           118         ARG**         7.57         11.51           120         PHE**         3.08         13.69           121         ASN**/***         1.96         2.2.26           122         THR**/***         0.36         7.34           123         PRO*/***         0.02         36.62           124         LEV***         0.15         1.711           126         GLV***         0         10.14           128         GLY**         0         10.14           129         ILE**         0.18         0.85           131         GLY**         0         1.148           132         PHE**         0.03         30.62           134*         ILE**         0         1.148           133         GLY**         0         1.148           134         ILE**         0         2.1           135         GLY**         0         1.73           136         ILE**         0         2.1           <                                                                                                                                                                                                                                               | 103                            | VAL<br>ARG***      | 20.19                            | 20.75                              |  |
| 117       ASP**       17.83       30.68         118       ARG**       7.57       11.51         120       PHE**       3.08       13.69         121       ASN**/***       0.36       2.2.36         122       THR**/***       0.36       7.57         123       PRO**/***       0.02       36.62         124       LEU**       5.65       36.62         125       CYS**/***       0.15       17.11         126       GLN*/**       0       10.14         129       ILE**       0.18       0.85         131       GLY**       0       1.4.4         132       PHE**       0.03       30.62         134*       ILE**       0       2.1         135       GLY**       0       1.1.48         136       ILE**       0.64       10.46         138       VAL**       5.3       14.8         139       THR**       14.42       33.96         141       ALA**       4.89       6.87         139       THR**       14.42       3.356         141       ALA**       4.89       6.87         151                                                                                                                                                                                                                                                                                                                                | 116                            | LYS**              | 44.19                            | 44.2                               |  |
| 118       ARG**       7.57       11.51         120       PRG**       3.08       13.69         121       ASN**/***       1.96       22.26         122       THR*/***       0.36       7.34         123       PRO*/***       0.02       36.62         124       LEU***       5.65       46.51         125       CYS*/**       0.15       17.11         126       GLN***       1.5       4.96         127       GLN*/**       0       10.14         128       GLY**       0       10.14         129       ILE**       0.18       0.85         131       GLY**       0       1.148         132       PHE*       0.03       30.62         134*       ILE**       0       1.148         135       GLY**       0       1.148         136       ILE**       0.64       10.46         138       VAL**       5.3       1.48         139       THR*       14.42       33.96         141       ALA**       4.89       6.87         148       GLN**       0.5       1.52         151       ASP                                                                                                                                                                                                                                                                                                                                  | 117                            | ASP**              | 17.83                            | 30.68                              |  |
| 120 $PHE^+$ 3.08       13.69         121 $ASN^{*+}/^{***}$ 0.96       7.34         123 $PRO^{*+}/^{***}$ 0.02       36.62         124 $LEU^{***}$ 5.65       46.51         125 $CYS^{*+}/^{***}$ 0.15       17.11         126 $GLV^{**}$ 0       10.14         129 $ILF^{**}$ 0.18       0.85         131 $GLY^{**}$ 0       10.14         129 $ILF^{**}$ 0.18       0.85         131 $GLY^{**}$ 0       1.14         132 $PHE^{**}$ 0.03       30.62         134'' $ILE^{**}$ 0       1.14         136 $ILF^{**}$ 0.64       10.46         138 $VAL^{**}$ 5.3       144         140 $ALA^{**}$ 4.89       6.87         141 $ALA^{**}$ 9.98       7.39         151 $ASP'/^{**}$ 0       1.73         152 $PTK^{*}/^{**}$ 9.5       2.335         154 $PHE^{*}$ 0       2.17         155 $PRO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118                            | ARG**              | 7.57                             | 11.51                              |  |
| 121       ASN '/**       0.36       7.34         122       THK*'/**       0.02       36.62         123       PRO*'/**       0.015       17.11         124       LEU**       5.65       36.62         125       CYS*'/**       0.15       17.11         126       GLN'/*'*       2.84       30.74         129       ILF*       0.18       0.85         131       GLY**       0       6.44         129       ILF*       0.18       0.85         131       GLY**       0       1.14         136       ILF*       0.64       1.046         138       VAL**       5.3       148         139       THR**       14.42       3.36         141       ALA**       4.89       6.67         142       PHE*       0       1.73         152       TYR*/**       9.5       23.35         154       PHE*       0       2.2         155       PRO'/**       7.88       2.2         156       ALA*/*       0.53       1.9         155       PRO*/**       0.73       2.13         156       ALA*/**                                                                                                                                                                                                                                                                                                                                  | 120                            | PHE**              | 3.08                             | 13.69                              |  |
| 123       PRO***       0.02       36.62         124       LEU***       5.65       46.51         125       CVS**/**       0.15       17.11         126       GLU***       1.5       4.96         127       GLN'**       0       10.14         128       GLY**       0       6.44         129       ILE**       0.18       0.85         131       GLY**       0       11.48         135       GLY**       0       11.48         135       GLY**       0       11.48         135       GLY**       0       11.48         136       ILE**       0.64       10.46         139       THR**       14.42       33.96         141       ALA**       4.89       6.87         142       JPE*       0       1.73         152       TYR****       9.5       23.35         154       PHE*       0       20.47         158       ASP*/**       0.5       15.82         151       VAL*       0.32       10.1         162       ASN'/**       0       21.79         155       PRO*** <t< td=""><td>121</td><td>ASN /<br/>THR**/***</td><td>1.96</td><td>22.26</td></t<>                                                                                                                                                                                                                                                             | 121                            | ASN /<br>THR**/*** | 1.96                             | 22.26                              |  |
| Interf         Interf<         Interf<         Interf<         Interf         Int | 122                            | PRO**/***          | 0.02                             | 36.62                              |  |
| 125 $CYS^{**}/^{**}$ 0.15       17.11         126 $GLU^{***}$ 1.5       4.96         127 $GLY^{**}$ 0       10.14         128 $GLY^{**}$ 0       6.44         129 $ILE^{**}$ 0.18       0.85         131 $GLY^{**}$ 0       6.44         132       PHE**       0.03       30.62         134* $ILE^{**}$ 0.64       10.46         135 $GLY^{**}$ 0       11.43         136 $ILE^{**}$ 0.64       10.46         138 $VAL^{**}$ 5.3       14.8         139       THR**       14.42       33.96         141 $ALA^{**}$ 4.89       6.87         148 $GLN^{***}$ 3.98       7.39         151 $ASP^{*}/^{***}$ 0       1.73         152 $TYR'^{***}$ 9.5       23.35         154       PHE*       0       21.13         155       PRO'^{***}       7.88       22.2         157       PHE*       0.5       15.82         151 $VAL^*$ 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124                            | LEU***             | 5.65                             | 46.51                              |  |
| 126       GLU <sup>***</sup> 1.5       4.96         127       GLN <sup>***</sup> 2.84       30.74         128       GLY <sup>**</sup> 0       10.14         129       ILE <sup>**</sup> 0.18       0.85         131       GLY <sup>**</sup> 0       6.44         132       PHE**       0.03       30.62         134 <sup>#</sup> ILE**       0       2.1         135       GLY**       0       11.48         136       ILE**       0.64       10.46         138       VAL**       5.3       148         139       THR**       14.42       33.96         141       ALA**       4.89       6.87         142       J.99       6.87       1.73         152       TYR*/**       9.5       2.3.35         154       PHE*       0       2.1.13         155       PR0 <sup>*</sup> /**       7.48       2.2.2         157       PHE*       0       2.1.79         158       ASP <sup>*</sup> /**       2.48       2.4.31         159       GLN**       0.32       10.1         162       ASN <sup>*</sup> /*       0.53       2.19         164       <                                                                                                                                                                                                                                                                     | 125                            | CYS**/***          | 0.15                             | 17.11                              |  |
| 127 $GLN^{+}/-^{++}$ 2.84       30.74         128 $GIY^{+*}$ 0       10.14         129       ILE**       0.18       0.85         131 $GLY^{+*}$ 0       6.44         132       PHE**       0.03       30.662         134*       ILE**       0       2.1         135 $GLY^{+*}$ 0       11.48         136       ILE**       0.64       10.46         138       VAL**       5.3       14.8         139       THR**       14.42       33.96         141       ALA**       4.89       6.87         148       GLN***       3.98       7.39         151       ASP'/**       0       1.73         152       TYR*/**       0       2.113         155       PR0*/***       7.88       22.2         157       PHE*       0       2.047         158       ASP'/**       2.48       2.431         159       GLN**       0.32       10.1         162       ASN'/**       0       2.179         163       GLU*/**       0.53       2.19         166                                                                                                                                                                                                                                                                                                                                                                              | 126                            | GLU***             | 1.5                              | 4.96                               |  |
| 128 $GLY$ 0       10.14         129 $ILE^*$ 0.18       0.85         131 $GLY^{**}$ 0       6.44         132       PHE**       0.03       30.62         134" $ILE^*$ 0       2.1         135 $GLY^{**}$ 0       11.48         136 $ILE^*$ 0.64       10.46         138 $VAL^{**}$ 5.3       14.8         139 $THR^*$ 14.42       33.96         141 $ALA^{**}$ 4.49       6.87         148 $GLN^{***}$ 3.98       7.39         151 $ASP^*/^{***}$ 0       1.73         152 $TYR^*/^{***}$ 9.5       2.335         154 $PHE^*$ 0       20.47         155 $PR0^*/^{***}$ 2.48       24.31         159 $GLN^{**}$ 0.55       15.82         161 $VAL^*$ 0.32       10.1         162 $ASN^*/^{**}$ 0.26       13.57         165 $ALA^*/^{**}$ 0.53       2.19         166 $LYS^*$ 3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127                            | GLN*/**/***        | 2.84                             | 30.74                              |  |
| 123       ILL       0.10       0.63         131       GLY**       0       6.44         132       PHE**       0.03       30.62         134*       ILE**       0       2.1         135       GLY**       0       11.48         136       ILE**       0.64       10.46         138       VAL**       5.3       14.8         139       THR**       14.42       33.96         141       ALA**       4.89       6.87         148       GLN***       3.98       7.39         151       ASP'/**       0       1.73         152       TYR*/**       9.5       23.35         154       PHE*       0       21.13         155       PRO'/**       7.88       22.2         157       PHE*       0       21.79         158       ASP*/**       2.48       24.31         159       GLN**       0.5       15.82         161       VAL*       0.32       10.1         162       ASN*/**       0.64       10.35         164       LY*       3.12       23.91         165       ALA*/**       <                                                                                                                                                                                                                                                                                                                                       | 128                            | GLY<br>UE**        | 0                                | 10.14                              |  |
| 11 $OLI **$ $O$ $O.3$ $30.62$ 134"ILE** $0$ $2.1$ 135GLY** $0$ $11.48$ 136ILF** $0.64$ $10.46$ 138VAL** $5.3$ $14.8$ 139THR** $14.42$ $33.96$ 141ALA** $4.89$ $6.87$ 148GLN*** $3.98$ $7.39$ 151ASP'/*** $0$ $1.73$ 152TYR'/*** $9.5$ $23.35$ 154PHE* $0$ $20.47$ 155PRO'/*** $7.88$ $22.2$ 157PHE* $0$ $20.47$ 158ASP*/** $2.48$ $24.31$ 159GLN** $0.5$ $15.82$ 161VAL* $0.32$ $10.1$ 162ASN*/* $0$ $21.79$ 163GLU** $0.53$ $2.19$ 164YAL* $0.53$ $2.19$ 165ALA*/** $0.53$ $2.19$ 166IYS* $3.12$ $23.91$ 167TYR*/* $0.64$ $10.35$ 168ARG* $5.8$ $26.48$ 170ARG*/** $1.73$ $36.54$ 171SER* $0.57$ $8.65$ 172GLY** $1.53$ $19.33$ 173ASP** $16.4$ $23.33$ 174LEU*/** $10.61$ $45.74$ 175PHE** $4.98$ $35.06$ 178GLY $0.5$ $0.53$ 179SER $6.74$ $6.82$ <tr< td=""><td>125</td><td>GLY**</td><td>0.18</td><td>6.44</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125                            | GLY**              | 0.18                             | 6.44                               |  |
| 134*       ILE**       0       2.1         135       GLY**       0       11.48         136       ILE**       0.64       10.46         138       VAL**       5.3       14.8         139       THR**       14.42       33.96         141       ALA**       4.89       6.87         148       GLN***       3.98       7.39         151       ASP*/**       0       1.73         152       TYR*/**       9.5       2.335         154       PHE*       0       20.47         158       ASP*/**       2.48       24.31         159       GLN**       0.5       15.82         161       VAL*       0.32       10.1         162       ASN*/**       0       21.79         163       GLU*/**       0.53       2.19         166       LYS*       3.12       23.91         167       TYR*       0.54       10.35         168       ARG**       5.8       26.48         169       TYR*/*       0.02       58.35         170       ARG*/*       1.53       19.33         173       ASP**                                                                                                                                                                                                                                                                                                                                        | 132                            | PHE**              | 0.03                             | 30.62                              |  |
| 135 $GLY^{**}$ 011.48136 $ILE^*$ 0.6410.46138 $VAL^*$ 5.314.8139 $THR^*$ 14.4233.96141 $ALA^*$ 4.896.87148 $GLN^{***}$ 3.987.39151 $ASP'/^{**}$ 01.73152 $TYR^*/^{**}$ 9.523.35154 $PHE^*$ 021.13155 $PRO'/^{***}$ 7.8822.2157 $PHE^*$ 020.47158 $ASP^*/^{**}$ 2.4824.31159 $GLN^*$ 0.515.82161 $VAL^*$ 0.3210.1162 $ASN^*/^*$ 021.79163 $GLU^*/^*$ 0.2613.57164 $LYS^*$ 3.1223.91167 $TYR^*/^*$ 0.5410.35168 $ARG^*$ 5.826.48169 $TYR^*/^*$ 0.0258.35170 $ARG^*/^*$ 1.7336.54171 $SER^*$ 0.578.65172 $GLY^*$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU^*$ 0.070.14181 $THR$ 0.150.19191 $HIS^{**}$ 10.4322.07193 $ALA^{**}$ 0.57.2194 $LEU^*$ 0.3921.45195 $TYR'/^*$ 0.311.44200 $PRO^*$ 0.330.35202 $ALA^*$ <td>134<sup>#</sup></td> <td>ILE**</td> <td>0</td> <td>2.1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134 <sup>#</sup>               | ILE**              | 0                                | 2.1                                |  |
| 136ILE**0.6410.46138VAL**5.314.8139THR**14.4233.96141ALA**4.896.87148GLN***3.987.39151ASP'/***01.73152TYR'/***9.523.35154PHE*021.13155PRO'/***7.8822.2157PHE*020.47158ASP'/**2.4824.31159GLN**0.515.82161VAL*0.3210.1162ASN*/**021.79163GLU'/**0.2613.57165ALA*/**0.532.19166IYS*3.1223.91167TYR**0.5410.35168ARG**5.826.48169TYR**1.5319.33171SER*0.578.65172GLY**1.5319.33173ASP**16.423.33174LEU***0.012.37180LEU0.070.14181THR0.150.19191HIS***25.9138.01192GLY**0.5337.26194LEU***0.3921.45195TYR*/***0.8137.68196HIS***1.04322.07198GLN*6.5613.12199SER*0.3921.45<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135                            | GLY**              | 0                                | 11.48                              |  |
| 138VAL**5.314.8139THR**14.4233.96141ALA**4.896.87148GLN***3.987.39151ASP*/***01.73152TYR/***9.523.35154PHE*020.47158ASP*/**2.4824.31159GLN**0.515.88161VAL*0.3210.1162ASN*/**021.79163GLU**0.532.19164LYS*3.1223.91165ALA***0.5410.35166LYS*3.1223.91167TYR**0.6410.35170ARG*/**1.7336.54171SER*0.578.65172GLY**1.5319.33173ASP**16.423.33174LEU/**0.070.14181THR0.150.19191HIS***25.9138.01178GLY0.50.53179SER6.746.82180LEU0.070.14181THR0.150.19191HIS***25.9138.01192GLY***0.313.76193ALA**0.57.2194LEU***0.3921.45195TYR'/***0.8137.68196HIS***1.04322.0719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 136                            | ILE**              | 0.64                             | 10.46                              |  |
| 1391HK14.4.233.96141 $ALA^{**}$ 4.896.87148 $GLN^{***}$ 3.987.39151 $ASP'/^{***}$ 01.73152 $TYR'/^{***}$ 9.523.35154 $PHE^*$ 021.13155 $PRO'/^{***}$ 7.8822.2157 $PHE^*$ 020.47158 $ASP^*/^{**}$ 2.4824.31159 $GLN^{**}$ 0.515.82161 $VAL^*$ 0.3210.1162 $ASN^*/^{**}$ 021.79163 $GLU^*/^{**}$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR^{**}$ 0.5410.35168 $ARG^{**}$ 5.826.48169 $TYR'/^{**}$ 0.0258.35170 $ARG^*/^{**}$ 1.7336.54171 $SER^{**}$ 0.578.65172 $GLY^{**}$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU'^{**}$ 0.150.19191 $HIS^{***}$ 25.9138.01178 $GIY$ 0.57.2184 $EEU$ 0.070.14181 $THR$ 0.150.19191 $HIS^{***}$ 10.4322.07193 $ALA^{***}$ 0.57.2194 $LEU^{***}$ 0.313.46205 $ALA^*$ 2.497.12203 $PHE^*$ 3.0537.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 138                            | VAL**              | 5.3                              | 14.8                               |  |
| 141ALX1.050.0148GLN***3.987.39151ASP*/***01.73152TYR/***9.523.35154PHE*021.13155PRO*/***7.8822.2157PHE*020.47158ASP*/**2.4824.31159GLN**0.515.82161VAL*0.3210.1162ASN*/**021.79163GLU**0.5613.57165ALA*/**0.532.19166LYS*3.1223.91167TYR**0.5410.35168ARG**5.826.48169TYR*/**0.578.65170ARG***1.6319.33173ASP**16.423.33174LEU***0.578.65175PHE**4.9835.06178GLY0.50.53179SER6.746.82180LEU0.070.14181THR0.150.19192GLY***0.3921.45195TYR/***0.8137.68196HIS***10.4322.07198GLN*6.5613.12199SER*2.924.04200PRO*0.230.35202ALA**0.655.84205ALA*2.497.12205 <t< td=""><td>139</td><td></td><td>14.42</td><td>33.96</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 139                            |                    | 14.42                            | 33.96                              |  |
| 151 $ASP^*/***$ 01.73152 $YR'/***$ 9.523.35154 $PHE^*$ 021.13155 $PRO'/***$ 7.8822.2157 $PHE^*$ 020.47158 $ASP^*/**$ 2.4824.31159 $GLN^{**}$ 0.515.82161 $VAL^*$ 0.3210.1162 $ASN^*/**$ 021.79163 $GLU'/**$ 0.2613.57165 $ALA^*/**$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR**$ 0.5410.35168 $ARG^{**}$ 5.826.48169 $TYR'/**$ 0.0258.35170 $ARG^*/**$ 1.7336.54171 $SER^*$ 0.578.65172 $GLY^{**}$ 1.06145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19191 $HIS^{***}$ 10.4322.07193 $ALA^{**}$ 0.57.2194 $LEU^{***}$ 0.3921.45195 $TYR'/**$ 0.8137.66196 $HIS^{**}$ 1.04322.07198 $GLN^*$ 0.655.84200 $PRO^*$ 0.230.35202 $ALA^*$ 0.655.84205 $ALA^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 148                            | GI N***            | 3.98                             | 7 39                               |  |
| 152 $TYR^*/^{***}$ 9.523.35154 $PHE^*$ 021.13155 $PRO'/^{***}$ 7.8822.2157 $PHE^*$ 020.47158 $ASP'/^{**}$ 2.4824.31159 $GLN^{**}$ 0.515.82161 $VAL^*$ 0.3210.1162 $ASN'/^{**}$ 021.79163 $GLU'/^*$ 0.2613.57165 $ALA'/^{**}$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR^{**}$ 0.5410.35168 $ARG^{**}$ 5.826.48169 $TYR'/^{**}$ 0.0258.35170 $ARG'/^{**}$ 1.7336.54171 $SER^{**}$ 0.578.65172 $GLY^{**}$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU'/^{**}$ 10.6145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19191 $HIS^{***}$ 2.5.9138.01192 $GLY^{***}$ 0.322.45195 $TYR'/^{***}$ 0.8137.68196 $HIS^{***}$ 1.04322.07198 $GLN^*$ 6.5613.12199 $SER^*$ 2.924.04200 $PRO^*$ 0.230.35 </td <td>151</td> <td>ASP*/***</td> <td>0</td> <td>1.73</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 151                            | ASP*/***           | 0                                | 1.73                               |  |
| 154PHE*021.13155PR0'/***7.8822.2157PHE*020.47158ASP'/**2.4824.31159GLN**0.515.82161VAL*0.3210.1162ASN'/**021.79163GLU*/**0.2613.57165ALA'/**0.532.19166LYS*3.1223.91167TYR**0.5410.35168ARG**5.826.48169TYR/**0.0258.35170ARG**1.7336.54171SER**0.578.65172GLY**1.5319.33173ASP**16.423.33174LEU/**10.6145.74175PHE**4.9835.06178GLY0.50.53179SER6.746.82180LEU0.070.14181THR0.150.19191HIS***25.9138.01192GLN**6.5613.12193ALA***0.57.2194LEU***0.3921.45195TYR'/***0.8137.68196HIS***10.4322.07193GLN*6.5613.12199SER*2.924.04200PRO*0.230.35202ALA*2.497.1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 152                            | TYR*/***           | 9.5                              | 23.35                              |  |
| 155 $PRO^*/^{**}$ 7.8822.2157 $PHE^*$ 020.47158 $ASP'/^{**}$ 2.4824.31159 $GLN^{**}$ 0.515.82161 $VAL^*$ 0.3210.1162 $ASN^*/^{**}$ 021.79163 $GLU'/^{**}$ 0.2613.57165 $ALA^*/^{**}$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR^{**}$ 0.5410.35168 $ARG^{**}$ 5.826.48169 $TYR'/^{**}$ 0.0258.35170 $ARG^*/^{**}$ 1.7336.54171 $SER^{**}$ 0.578.65172 $GLY^{**}$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU'/^{**}$ 10.6145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19191 $HIS^{***}$ 0.3921.45195 $TYR'/^{***}$ 0.8137.68196 $HIS^{***}$ 1.04322.07198 $GLN^*$ 6.5613.12199 $SER^*$ 2.924.04200 $PRO^*$ 0.230.35202 $ALA^*$ 2.497.12203 $PHE^*$ 3.0537.26205 $ALA^*$ 0.497.12<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 154                            | PHE*               | 0                                | 21.13                              |  |
| 157PHE020.47158 $ASP'/*$ 2.4824.31159 $GLN^**$ 0.515.82161 $VAL^*$ 0.3210.1162 $ASN^*/**$ 021.79163 $GLU'/**$ 0.2613.57165 $ALA'/**$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR^*$ 0.5410.35168 $ARG^**$ 5.826.48169 $TYR/**$ 0.0258.35170 $ARG^*/**$ 1.7336.54171 $SER^*$ 0.578.65172 $GLY^{**}$ 1.6423.33173 $ASP^{**}$ 16.423.33174 $LEU'/**$ 10.6145.74175PHE**4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181THR0.150.19191HIS***0.597.2194 $LEU^{**}$ 0.3921.45195 $TYR^*/**$ 0.8137.68196HIS***10.4322.07198 $GLN^*$ 6.5613.12203PHC*3.0537.26204 $HA^*$ 0.655.84205 $ALA^*$ 0.655.84206HIS**1.7949.82207 $CYS^*$ 0.311.44208 $PRO'/**$ 5.2536.43 <t< td=""><td>155</td><td>PRO*/***</td><td>7.88</td><td>22.2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 155                            | PRO*/***           | 7.88                             | 22.2                               |  |
| 150AST /<br>GLN**2.46024.51159GLN**0.515.82161VAL*0.3210.1162ASN'/**021.79163GLU*/**0.532.19166LYS*3.1223.91167TYR**0.5410.35168ARG**5.826.48169TYR'/**0.0258.35170ARG*/**1.7336.54171SER**0.578.65172GLY**1.6423.33174LEU*/**10.6145.74175PHE**4.9835.06178GLY0.50.53179SER6.746.82180LEU0.070.14181THR0.150.19191HIS***0.597.2193ALA***0.57.2194LEU***0.3921.45195TYR*/***0.8137.68196HIS***10.4322.07198GLN*6.5613.12200PRO*0.230.35202ALA*0.655.84206HIS***1.7949.82207CYS*0.311.44208PRO*/**5.2536.43209GLY**0.321.45211LYS**1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157                            | PHE<br>ASD*/**     | 0                                | 20.47                              |  |
| 155 $0$ $0.32$ $10.1$ 161 $VAL^*$ $0.32$ $10.1$ 162 $ASN^*/^{**}$ $0$ $21.79$ 163 $GLU^*/^{**}$ $0.53$ $2.19$ 166 $LYS^*$ $3.12$ $23.91$ 167 $TYR^{**}$ $0.54$ $10.35$ 168 $ARG^*$ $5.8$ $26.48$ 169 $TYR^*/^{**}$ $0.57$ $8.65$ 170 $ARG^*/^{**}$ $1.73$ $36.54$ 171 $SER^{**}$ $0.57$ $8.65$ 172 $GLY^{**}$ $1.53$ $19.33$ 173 $ASP^{**}$ $16.4$ $23.33$ 174 $LEU^*/^{**}$ $10.61$ $45.74$ 175 $PHE^{**}$ $4.98$ $35.06$ 178 $GLY$ $0.5$ $0.53$ 179 $SER$ $6.74$ $6.82$ 180 $LEU$ $0.07$ $0.14$ 181 $THR$ $0.15$ $0.19$ 191 $HIS^{***}$ $25.91$ $38.01$ 192 $GLY^{***}$ $0.39$ $21.45$ 195 $TYR^*/^{***}$ $0.81$ $37.68$ 196 $HIS^{***}$ $10.43$ $22.07$ 198 $GLN^*$ $6.56$ $13.12$ 199 $SER^*$ $2.92$ $4.04$ 200 $PR0^*$ $0.23$ $0.35$ 202 $ALA^*$ $2.49$ $7.12$ 203 $PRE^*$ $1.79$ $49.82$ 207 $CYS^*$ $0.31$ $1.44$ 208 $PRO^*/^{**}$ $5.25$ $36.43$ 209 $G$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 159                            | GI N**             | 2.40                             | 24.31                              |  |
| 162 $ASN^*/^{**}$ 021.79163 $GLU^*/^{**}$ 0.2613.57165 $ALA^*/^{**}$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR^{**}$ 0.5410.35168 $ARG^{**}$ 5.826.48169 $TYR^*/^{**}$ 0.0258.35170 $ARG^*/^{**}$ 1.7336.54171 $SER^{**}$ 0.578.65172 $GLY^{**}$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU^*/^{**}$ 10.6145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19191 $HIS^{***}$ 0.3921.45195 $TYR^*/^{***}$ 0.8137.68196 $HIS^{***}$ 1.04322.07198 $GLN^*$ 6.5613.12199 $SER^*$ 2.924.04200 $PRO^*$ 0.230.35202 $ALA^*$ 2.497.12203 $PHE^*$ 3.0537.26205 $ALA^*$ 0.655.84206 $HIS^*$ 1.7949.82207 $CYS^*$ 0.311.44208 $PRO^*/^{**}$ 5.2536.43209 $GLY^{**}$ 0.321.45201 $ILE^{**}$ 0.521.45<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161                            | VAL*               | 0.32                             | 10.1                               |  |
| 163 $GLU^*/^{**}$ 0.2613.57165 $ALA^*/^{**}$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR^*$ 0.5410.35168 $ARG^{**}$ 5.826.48169 $TYR'/^{**}$ 0.0258.35170 $ARG^*/^{**}$ 1.7336.54171 $SER^{**}$ 0.578.65172 $GLY^{**}$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU'/^{**}$ 10.6145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19191 $HIS^{***}$ 25.9138.01192 $GLY^{***}$ 0.3921.45195 $TYR'/^{***}$ 0.8137.68196 $HIS^{***}$ 10.4322.07198 $GLN^*$ 6.5613.12199 $SER^*$ 2.924.04200 $PRO^*$ 0.230.35202 $ALA^*$ 0.655.84205 $ALA^*$ 0.655.84206 $HIS^*$ 1.7949.82207 $CYS^*$ 0.311.44208 $PRO'/^{**}$ 5.2536.43209 $GLY^{**}$ 0.321.294211 $LYS^{**}$ 1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 162                            | ASN*/**            | 0                                | 21.79                              |  |
| 165 $ALA'/^{**}$ 0.532.19166 $LYS^*$ 3.1223.91167 $TYR^{**}$ 0.5410.35168 $ARG^{**}$ 5.826.48169 $TYR'/^{**}$ 0.0258.35170 $ARG'/^{**}$ 1.7336.54171 $SER^{**}$ 0.5319.33173 $ASP^{**}$ 16.423.33174 $LEU'/^{**}$ 10.6145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19191 $HIS^{***}$ 25.9138.01192 $GLY^{***}$ 0.3921.45195 $TYR'/^{**}$ 0.8137.68196 $HIS^{***}$ 2.924.04200 $PRO^*$ 0.230.35202 $ALA^*$ 2.497.12203 $PHE^*$ 3.0537.26205 $ALA^*$ 0.655.84206 $HIS^*$ 1.7949.82207 $CYS^*$ 0.311.44208 $PRO'/^{**}$ 5.2536.43209 $GLY^{**}$ 0.321.294211 $LYS^{**}$ 1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 163                            | GLU*/**            | 0.26                             | 13.57                              |  |
| 166LTS $3.12$ $23.91$ 167TYR** $0.54$ $10.35$ 168ARG** $5.8$ $26.48$ 169TYR*/** $0.02$ $58.35$ 170ARG'/** $1.73$ $36.54$ 171SER** $0.57$ $8.65$ 172GLY** $1.53$ $19.33$ 173ASP** $16.4$ $23.33$ 174LEU*/** $10.61$ $45.74$ 175PHE** $4.98$ $35.06$ 178GLY $0.5$ $0.53$ 179SER $6.74$ $6.82$ 180LEU $0.07$ $0.14$ 181THR $0.15$ $0.19$ 192GLY*** $0.01$ $2.37$ 193ALA*** $0.5$ $7.2$ 194LEU*** $0.39$ $21.45$ 195TYR*/** $0.81$ $37.68$ 196HIS*** $10.43$ $22.07$ 198GLN* $6.56$ $13.12$ 199SER* $2.49$ $7.12$ 203PHE* $3.05$ $37.26$ 205ALA* $0.65$ $5.84$ 206HIS* $1.79$ $49.82$ 207CYS* $0.31$ $1.44$ 208PR0*/** $5.25$ $36.43$ 209GLY** $0.32$ $1.45$ 211LYS** $1.92$ $9.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 165                            | ALA*/**            | 0.53                             | 2.19                               |  |
| 107111 $0.34$ 10.35168ARG**5.826.48169TYR*/**0.0258.35170ARG*/**1.7336.54171SER**0.578.65172GLY**1.5319.33173ASP**16.423.33174LEU*/**10.6145.74175PHE**4.9835.06178GLY0.50.53179SER6.746.82180LEU0.070.14181THR0.150.19192GLY***0.012.37193ALA***0.57.2194LEU***0.3921.45195TYR*/***0.8137.68196HIS***10.4322.07198GLN*6.5613.12199SER*2.924.04200PRO*0.230.35202ALA*2.497.12203PHE*3.0537.26205ALA*0.655.84206HIS*1.7949.82207CYS*0.311.44208PR0*/**5.2536.43209GLY**0.521.45211LYS**1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 166                            | LYS<br>TVP**       | 3.12                             | 23.91                              |  |
| 100 $1 \mathrm{YR}^*/^{**}$ 0.0258.35169 $\mathrm{TYR}^*/^{**}$ 1.7336.54170 $\mathrm{ARG}^*/^{**}$ 1.7336.54171 $\mathrm{SER}^{**}$ 0.578.65172 $\mathrm{GLY}^{**}$ 1.5319.33173 $\mathrm{ASP}^{**}$ 16.423.33174 $\mathrm{LEU}^*/^{**}$ 10.6145.74175 $\mathrm{PHE}^{**}$ 4.9835.06178 $\mathrm{GLY}$ 0.50.53179 $\mathrm{SER}$ 6.746.82180 $\mathrm{LEU}$ 0.070.14181 $\mathrm{THR}$ 0.150.19191 $\mathrm{HIS}^{***}$ 25.9138.01192 $\mathrm{GLY}^{***}$ 0.3921.45193 $\mathrm{ALA}^{***}$ 0.57.2194 $\mathrm{LEU}^{***}$ 0.3921.45195 $\mathrm{TYR}^*/^{***}$ 0.8137.68196 $\mathrm{HIS}^{***}$ 10.4322.07198 $\mathrm{GLN}^*$ 6.5613.12199 $\mathrm{SER}^*$ 2.924.04200 $\mathrm{PRO}^*$ 0.230.35202 $\mathrm{ALA}^*$ 0.655.84206 $\mathrm{HIS}^*$ 1.7949.82207 $\mathrm{CYS}^*$ 0.311.44208 $\mathrm{PRO}^*/^{**}$ 5.2536.43209 $\mathrm{GLY}^{**}$ 0.521.45211 $\mathrm{LYS}^{**}$ 1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                 | 168                            | ARG**              | 5.8                              | 26.48                              |  |
| 170 $ARG^4/^{**}$ 1.7336.54171 $SER^{**}$ 0.578.65172 $GLY^{**}$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU^*/^{**}$ 10.6145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19192 $GLY^{***}$ 0.3921.45193 $ALA^{***}$ 0.57.2194 $LEU^{***}$ 0.3921.45195 $TYR^*/^{***}$ 0.8137.68196 $HIS^{***}$ 10.4322.07198 $GLN^*$ 6.5613.12199 $SER^*$ 2.924.04200 $PR0^*$ 0.230.35202 $ALA^*$ 2.497.12203 $PHE^*$ 3.0537.26205 $ALA^*$ 0.655.84206 $HIS^*$ 1.7949.82207 $CYS^*$ 0.311.44208 $PR0^*/^{**}$ 5.2536.43209 $GLY^{**}$ 0.521.45211 $LYS^{**}$ 1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 169                            | TYR*/**            | 0.02                             | 58.35                              |  |
| 171SER**0.578.65 $172$ GLY** $1.53$ $19.33$ $173$ ASP** $16.4$ $23.33$ $174$ LEU*/** $10.61$ $45.74$ $175$ PHE** $4.98$ $35.06$ $178$ GLY $0.5$ $0.53$ $179$ SER $6.74$ $6.82$ $180$ LEU $0.07$ $0.14$ $181$ THR $0.15$ $0.19$ $192$ GLY*** $0.01$ $2.37$ $193$ ALA*** $0.5$ $7.2$ $194$ LEU*** $0.39$ $21.45$ $195$ TYR*/*** $0.81$ $37.68$ $196$ HIS*** $10.43$ $22.07$ $198$ GLN* $6.56$ $13.12$ $199$ SER* $2.92$ $4.04$ $200$ PR0* $0.23$ $0.35$ $202$ ALA* $2.49$ $7.12$ $203$ PHE* $3.05$ $37.26$ $205$ ALA* $0.65$ $5.84$ $206$ HIS* $1.79$ $49.82$ $207$ CYS* $0.31$ $1.44$ $208$ PR0*/** $5.25$ $36.43$ $209$ GLY** $0.32$ $1.45$ $211$ LYS** $1.92$ $9.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170                            | ARG*/**            | 1.73                             | 36.54                              |  |
| 172 $GLY^{**}$ 1.5319.33173 $ASP^{**}$ 16.423.33174 $LEU^*/^{**}$ 10.6145.74175 $PHE^{**}$ 4.9835.06178 $GLY$ 0.50.53179 $SER$ 6.746.82180 $LEU$ 0.070.14181 $THR$ 0.150.19192 $GLY^{***}$ 0.012.37193 $ALA^{***}$ 0.57.2194 $LEU^{***}$ 0.3921.45195 $TYR^*/^{***}$ 0.8137.68196 $HIS^{***}$ 10.4322.07198 $GLN^*$ 6.5613.12199 $SER^*$ 2.924.04200 $PR0^*$ 0.230.35202 $ALA^*$ 2.497.12203 $PHE^*$ 3.0537.26205 $ALA^*$ 0.655.84206 $HIS^*$ 1.7949.82207 $CYS^*$ 0.311.44208 $PR0^*/^{**}$ 5.2536.43209 $GLY^{***}$ 0.3212.94210 $LE^{**}$ 0.521.45211 $LYS^{**}$ 1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 171                            | SER**              | 0.57                             | 8.65                               |  |
| 173ASP16.4 $23.33$ $174$ LEU*/**10.6145.74 $175$ PHE**4.9835.06 $178$ GLY0.50.53 $179$ SER6.746.82 $180$ LEU0.070.14 $181$ THR0.150.19 $191$ HIS***25.9138.01 $192$ GLY***0.012.37 $193$ ALA***0.57.2 $194$ LEU***0.3921.45 $195$ TYR*/***0.8137.68 $196$ HIS***10.4322.07 $198$ GLN*6.5613.12 $199$ SER*2.924.04 $200$ PR0*0.230.35 $202$ ALA*2.497.12 $203$ PHE*3.0537.26 $205$ ALA*0.655.84 $206$ HIS*1.7949.82 $207$ CYS*0.311.44 $208$ PR0*/**5.2536.43 $209$ GLY**0.3212.94 $210$ LE**0.521.45 $211$ LYS**1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172                            | GLY**              | 1.53                             | 19.33                              |  |
| 174LEO /<br>PHE** $4.98$ $35.06$ $175$ PHE** $4.98$ $35.06$ $178$ GLY $0.5$ $0.53$ $179$ SER $6.74$ $6.82$ $180$ LEU $0.07$ $0.14$ $181$ THR $0.15$ $0.19$ $191$ HIS*** $25.91$ $38.01$ $192$ GLY*** $0.01$ $2.37$ $193$ ALA*** $0.5$ $7.2$ $194$ LEU*** $0.39$ $21.45$ $195$ TYR*/*** $0.81$ $37.68$ $196$ HIS*** $10.43$ $22.07$ $198$ GLN* $6.56$ $13.12$ $199$ SER* $2.92$ $4.04$ $200$ PR0* $0.23$ $0.35$ $202$ ALA* $2.49$ $7.12$ $203$ PHE* $3.05$ $37.26$ $205$ ALA* $0.65$ $5.84$ $206$ HIS** $1.79$ $49.82$ $207$ CYS* $0.31$ $1.44$ $208$ PR0*/** $5.25$ $36.43$ $209$ GLY** $0.32$ $1.294$ $210$ ILE** $0.52$ $1.45$ $211$ LYS** $1.92$ $9.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 173                            | ASP <sup>**</sup>  | 16.4                             | 23.33                              |  |
| 1751111.550.53178GLY0.50.53179SER $6.74$ $6.82$ 180LEU0.070.14181THR0.150.19191HIS***25.9138.01192GLY***0.012.37193ALA***0.57.2194LEU***0.3921.45195TYR*/***0.8137.68196HIS***10.4322.07198GLN*6.5613.12199SER*2.924.04200PRO*0.230.35202ALA*2.497.12203PHE*3.0537.26205ALA*0.655.84206HIS**1.7949.82207CYS*0.311.44208PRO*/**5.2536.43209GLY**0.3212.94210ILE**0.521.45211LYS**1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 174                            | PHF**              | 4 98                             | 45.74                              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 178                            | GLY                | 0.5                              | 0.53                               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 179                            | SER                | 6.74                             | 6.82                               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180                            | LEU                | 0.07                             | 0.14                               |  |
| 191HIS25.9138.01192GLY***0.012.37193ALA***0.57.2194LEU***0.3921.45195TYR*/***0.8137.68196HIS***10.4322.07198GLN*6.5613.12199SER*2.924.04200PRO*0.230.35202ALA*2.497.12203PHE*3.055.84206HIS*1.7949.82207CYS*0.311.44208PRO*/**5.2536.43209GLY**0.521.45211LYS**1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 181                            | THR                | 0.15                             | 0.19                               |  |
| 192         0L1         0.01         2.37           193         ALA***         0.5         7.2           194         LEU***         0.39         21.45           195         TYR*/***         0.81         37.68           196         HIS***         10.43         22.07           198         GLN*         6.56         13.12           199         SER*         2.92         4.04           200         PRO*         0.23         0.35           202         ALA*         2.49         7.12           203         PHE*         3.05         5.84           206         HIS*         1.79         49.82           207         CYS*         0.31         1.44           208         PR0*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                         | 191                            | HIS<br>CLV***      | 25.91                            | 38.01                              |  |
| 1931EL0.3921.45194LEU***0.3921.45195TYR*/**0.8137.68196HIS***10.4322.07198GLN*6.5613.12199SER*2.924.04200PRO*0.230.35202ALA*2.497.12203PHE*3.0537.26205ALA*0.655.84206HIS*1.7949.82207CYS*0.311.44208PRO*/**5.2536.43209GLY**0.321.294210LE**0.521.45211LYS**1.929.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 192                            | AI A***            | 0.01                             | 2.37                               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 194                            | LEU***             | 0.39                             | 21.45                              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 195                            | TYR*/***           | 0.81                             | 37.68                              |  |
| 198         GLN*         6.56         13.12           199         SER*         2.92         4.04           200         PR0*         0.23         0.35           202         ALA*         2.49         7.12           203         PHE*         3.05         37.26           205         ALA*         0.65         5.84           206         HIS*         1.79         49.82           207         CYS*         0.31         1.44           208         PR0*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196                            | HIS***             | 10.43                            | 22.07                              |  |
| 199         SER'         2.92         4.04           200         PRO*         0.23         0.35           202         ALA*         2.49         7.12           203         PHE*         3.05         37.26           205         ALA*         0.65         5.84           206         HIS*         1.79         49.82           207         CYS*         0.31         1.44           208         PRO*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 198                            | GLN*               | 6.56                             | 13.12                              |  |
| 200         FKU         0.23         0.35           202         ALA*         2.49         7.12           203         PHE*         3.05         37.26           205         ALA*         0.65         5.84           206         HIS*         1.79         49.82           207         CYS*         0.31         1.44           208         PRO*/**         5.25         36.43           209         GLY**         0.52         1.294           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199                            | SER"               | 2.92                             | 4.04                               |  |
| ZOZ         ALA         Z.45         7.12           203         PHE*         3.05         37.26           205         ALA*         0.65         5.84           206         HIS*         1.79         49.82           207         CYS*         0.31         1.44           208         PRO*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200                            |                    | 0.23                             | U.35<br>7 1 2                      |  |
| 111         112         112           205         ALA*         0.65         5.84           206         HIS*         1.79         49.82           207         CYS*         0.31         1.44           208         PRO*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 203                            | PHE*               | 2.45                             | 37.26                              |  |
| 206         HIS*         1.79         49.82           207         CYS*         0.31         1.44           208         PRO*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 205                            | ALA*               | 0.65                             | 5.84                               |  |
| 207         CYS*         0.31         1.44           208         PR0*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 206                            | $HIS^*$            | 1.79                             | 49.82                              |  |
| 208         PR0*/**         5.25         36.43           209         GLY**         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 207                            | CYS*               | 0.31                             | 1.44                               |  |
| ZU9         GLY         0.32         12.94           210         ILE**         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 208                            | PRO*/**            | 5.25                             | 36.43                              |  |
| ILE         0.52         1.45           211         LYS**         1.92         9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 209                            | GLY<br>TTE**       | 0.32                             | 12.94                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 211                            | LYS**              | 1.92                             | 9.47                               |  |

(Continued)

|                                |                  | Percent solvent accessible areas |                                    |  |
|--------------------------------|------------------|----------------------------------|------------------------------------|--|
| Amino acid<br>residue position | Residue<br>type  | In the complex $\alpha^2\beta^2$ | In the<br>isolated<br>β/β' subunit |  |
| 228                            | CYS              | 0                                | 0.07                               |  |
| 229                            | ILE              | 2.56                             | 2.64                               |  |
| 231                            | ASP              | 7.53                             | 7.79                               |  |
| 232                            | LYS              | 36.33                            | 47.22                              |  |
| 233                            | ASN**            | 0.46                             | 12.78                              |  |
| 308                            | ILE*/**          | 2.65                             | 7.39                               |  |
| 309                            | PRO**            | 7.33                             | 22.97                              |  |
| 310                            | TRP*/**          | 2.64                             | 9.25                               |  |
| 312                            | VAL**            | 2.47                             | 15.11                              |  |
| 313                            | ASP**            | 29.41                            | 31.02                              |  |
| 331                            | ALA*             | 0.67                             | 1.93                               |  |
| 332                            | PRO*             | 7.64                             | 17.46                              |  |
| 333                            | LEU*/***         | 13.52                            | 19.1                               |  |
| 334                            | THR              | 6.59                             | 31.49                              |  |
| 335                            | GLY*             | 5.41                             | 17.32                              |  |
| 336                            | UL I<br>DUE*     | 0.28                             | 0.94                               |  |
| 220 <sup>#</sup>               | CED*             | 1.14                             | 2.71                               |  |
| 340                            | GUI*             | 0.54                             | 21.43                              |  |
| 342                            | SER*             | 0.21                             | 5.4                                |  |
| 343                            | SER*             | 0.16                             | 15 34                              |  |
| 344                            | THR*/**          | 0.8                              | 5.67                               |  |
| 346                            | GLN*             | 0.26                             | 20.96                              |  |
| 347                            | $GLU^*$          | 13.62                            | 32.79                              |  |
| 348                            | GLU**            | 23.42                            | 29.78                              |  |
| 350                            | PHE*             | 8.74                             | 40.53                              |  |
| 351                            | LEU*             | 45.73                            | 53.44                              |  |
| 353                            | LEU*             | 4.86                             | 12.12                              |  |
| 354                            | GLU*             | 28.27                            | 29.84                              |  |
| 355                            | ALA*             | 0                                | 1.81                               |  |
| 356                            | PRO*             | 4.8                              | 22.1                               |  |
| 357                            | ILE<br>CED*      | 0.08                             | 7.01                               |  |
| 358                            | SEK              | 6.58                             | 7.24                               |  |
| 363                            | TVP***           | 6.13<br>E 20                     | 25.71                              |  |
| 364                            | ΔSP*/***         | 5.29                             | 23.69                              |  |
| 365                            | THR*/***         | 0.58                             | 22.30                              |  |
| 366                            | PRO*/***         | 1.97                             | 30.48                              |  |
| 367                            | PHE*/***         | 4.94                             | 5.12                               |  |
| 368                            | PRO*/***         | 0                                | 7.87                               |  |
| 369                            | HIS              | 3.36                             | 31.27                              |  |
| 370                            | ILE***           | 9.9                              | 39.64                              |  |
| 371                            | PHE*/***         | 0                                | 38.54                              |  |
| 373                            | PRO***           | 16.35                            | 27.37                              |  |
| 374                            | PHE***           | 0                                | 46.57                              |  |
| 375                            | TYR***           | 0.47                             | 2.36                               |  |
| 378                            | ASP***           | 6.29                             | 10.17                              |  |
| 380                            | IKP              | 12.3                             | 43.92                              |  |
| 10C                            | LIS<br>TVP***    | 6.73<br>2.72                     | 20.06                              |  |
| 204                            | 1 I K<br>A CD*** | 3.72                             | 1.08                               |  |
| 204                            | ASP<br>ARC***    | 4.03<br>24 E2                    | 15.31                              |  |
| 388                            | I YS***          | 24.52                            | 20.9<br>35.67                      |  |
| 392                            | TYR*             | 35.11                            | 50.97                              |  |

<sup>#</sup>, mutated residues; <sup>\*</sup>, residues present at homodimers interface of  $\alpha - \alpha'$  and  $\beta - \beta'$  subunits; <sup>\*\*</sup>, residues present at interface of  $\alpha - \beta$ ; <sup>\*\*\*</sup>, residues present at  $\alpha - \beta'$  and  $\beta - \alpha'$  subunits; /, residues present at more than one interface.

of E1 $\alpha$  as well as E1 $\alpha$ -E1 $\beta$  interaction. The E1 $\beta$  I134 is located in a helix (residues 126–138) where its main chain C=O and N–H groups are involved in helical hydrogen bonds (backbone–backbone hydrogen bonds) with other residues in the helix viz., V130, A137, and V138 (Fig. 3B). N134 is expected to make an additional H-bond with V130 (side chain to main chain) (Fig. 3B) thus possibly weakening the helical H-bond which in turn can destabilize the helix. Furthermore, this helix is at the interface region of E1 $\alpha$ -E1 $\beta$  complex and hence the mutation is expected to impede E1 $\alpha$ -E1 $\beta$ 

![](_page_7_Figure_0.jpeg)

Fig. 3. Structure analysis of missense mutations identified in this study. Panel A depicts the effect of *BCKDHA* p.Y438H mutation; subunit  $\alpha$  is shown in green,  $\beta$  in cyan,  $\beta'$  in yellow and the mutated residue in red ball and stick model. Hydrogen bonds are denoted by red dotted lines. Panels B to E depict effects of *BCKDHB* mutations 1134N (B), R1830 (C), T322A (D) and S339L (E); color schema is same as in panel A. Panel F shows a ribbon-plot representation of the E1 heterotetramer showing the location of mutated amino acid residues; E1 $\alpha'$  is depicted in magenta. Missense mutations identified in E1 $\alpha$  and E1 $\beta$  are represented by spheres. Mutations occurring at interface region are shown in red and other mutations are in orange. The ribbon-plot was generated using PyMOL [DeLano, 2002] (DeLano Scientific, San Carlos, CA) using the Protein Data Bank entry 1X7Y. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/journal/jcb]

assembly. The R183 residue, located in a beta sheet that includes a K+ ion-binding pocket (Fig. 3C) appears to form salt bridges with Glu239 and Glu146 (Fig. 3C). Glutamine at this position may lead to disruption of the salt-bridges (Fig. 3C, inset) as well as K+ binding. The T322 residue is located at the C-terminal end of a helix (residues 312–322) and is expected to make side chain H-bonds with R334, Y273, and S318 in addition to a main chain H-bond with S318 (Fig. 3D). All three side chain H-bonds are lost in the mutant A322 protein (Fig. 3D, inset) which may result in destabilization of the E1 $\beta$  structure. S339 is involved in side chain-side chain H-bonding with S339 of another E1 $\beta$  subunit that may be important for dimerization (Fig. 3E). Substitution of a bulkier hydrophobic residue like leucine at this position precludes side chain H-bonding (Fig. 3E, inset) and hampers tight packing of the two beta subunits.

Family 2 harbored the *BCKDHA* c.1249delC mutation (located in the last (9th) exon); the mutation results in a change in amino acid sequence starting from 417th residue and causes addition of 38 extra amino acids (Fig. 4A). The mutation is expected to perturb  $E1\alpha$ – $E1\beta$ 

interaction. Family 4 harbored the BCKDHA c.1561T>A heterozygous mutation located in the 3'-UTR (Fig. 4B). The mutation may perturb mRNA stability, transport or translation efficiency. The mutation does not appear to perturb any known miRNA target sequence (data not shown). This is the first 3'-UTR mutation detected in either BCKDHA or BCKDHB though it was previously reported in DBT [Brodtkorb et al., 2010]. Family 5 harbored the BCKDHB c.853C>T (p.R285X) nonsense mutation that generates a premature termination codon (PTC) 99 nucleotides upstream of the exon 8exon 9 junction (Fig. 4C). The PTC did not alter normal splicing of the exon (data not shown). The mutation however resulted in a significant reduction in BCKDHB transcript level when compared with wild type BCKDHB transcript (Fig. 4D) suggesting that the mutant transcript was subjected to nonsense mediated decay (NMD) induced degradation [Nagy and Maquat, 1998; Bashyam, 2009]. In addition, the residual truncated protein (synthesized on the minor intact mRNA fraction) would be devoid of C-terminal 107 amino acid residues which include the E1ß interface segment (aa residues

| A Normal :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1227                                                                                                                 |
| -VMEAFEOAERKPKPNPNLLF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 409                                                                                                                  |
| TCAGACGTGTATCAGGAGATGCCCGCCCAGCTCCGCAAGCAGCAGGAGTCTCTGGCCCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1287                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 429                                                                                                                  |
| CACCTGCAGACCTACGGGGGGGGGCACTACCCACTGGATCACTTCGATAAGTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1338                                                                                                                 |
| -HLQTYGEHYPLDHFDK*-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 445                                                                                                                  |
| Mutant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |
| GTGATGGAGGCCTTTGAGCAGGCCGAGCGGAAGCCCAAACCCAACCCCAACCTACTCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1227                                                                                                                 |
| -VMEAFEQAERKPKPNPNLLF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 409                                                                                                                  |
| TCAGACGTGTATCAGGAGATGCCGCCCAGCTCCGCAAGCAGCAGGAGTCTCTGGCCCGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1287                                                                                                                 |
| -SDVYQEMPPSSASSRSLWPA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 429                                                                                                                  |
| ACCTGCAGACCTACGGGGGGGCACTACCCACTGGATCACTTCGATAAGTGAGACCTGCTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1347                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1407                                                                                                                 |
| -AHPHPSSATPRGSPTLRGAG-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 469                                                                                                                  |
| GGACCTGACAGCACCACTGTCTTCCCCCAGTCAGCTCCCTCTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1452                                                                                                                 |
| -GPDSTPLSSPVSSL*-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 483                                                                                                                  |
| B GTGATGGAGGCCTTTGAGCAGGCCGAGCGGAAGCCCAACCCCAACCCCAACCTACTCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1227                                                                                                                 |
| -VMEAFEQAERKPKPNPNLF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 409                                                                                                                  |
| TCAGACGTGTATCAGGAGATGCCCGCCCAGCTCCGCAAGCAGCAGGAGTCTCTGGCCCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1287                                                                                                                 |
| -SDVYQEMPAQLRKQQESLAR-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 429                                                                                                                  |
| CACCTGCAGACCTACGGGGAGCACTACCCACTGGATCACTTCGATAAG <u>TGA</u> GACCTGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1347                                                                                                                 |
| -HLQTYGEHYPLDHFDK*-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 445                                                                                                                  |
| AGCCCACCCCCACCCATCCTCAGCTACCCCGAGAGGTAGCCCCACTCTAAGGGGAGCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1407                                                                                                                 |
| AGGGCGGCTGCCACTCTTCACCCCTGCTCCTCCCGGCTGTTACATTGTCAGGGGACAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1527                                                                                                                 |
| tctgcagcagttgctgaggctccgtcagccccc <u>t</u> cttcacctgttgttacagtgccttct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1587                                                                                                                 |
| CCCAGGGGCTGGGTGAGGGCACATTCAGGACTAGAAGCCCCTCTGGGCATGGGGTGGACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1647                                                                                                                 |
| CTGCATCTCTGCGCCTGGCTCTCTACCACCTCTGGTCTTTGTTTCCTGGAGTTTGGGGGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1767                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                                                                                                  |
| GTCATTGATCTGAGGACTATAATACCTTGGGATGTGGACACAATTTGTAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 951                                                                                                                  |
| -VIDLRTIIPWDVDTICK-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 317                                                                                                                  |
| D P=0.0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |
| 3000<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |
| 3000<br>32500<br>22000<br>22000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| 3000<br>2500<br>2000<br>21500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |
| 3000<br>2500<br>22000<br>21500<br>21000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |
| 3000<br>2500<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2 |                                                                                                                      |
| 3000<br>2500<br>2000<br>2000<br>21500<br>21500<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200    |                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| 3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>300<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3 |                                                                                                                      |
| Normal Alexandree Alex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |
| E TCTGTGATCAAAAACAGGG <u>C</u> GACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1011                                                                                                                 |
| <b>E</b> TCTGTGATCAAAACAGGGCGACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT<br>-SVIKTGRLLISHEAPLTGGF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1011                                                                                                                 |
| E TCTGTGATCAAAACAGGGCGACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT<br>-SVIKTGRLIISHEAPLTGGF-<br>GCATCGGAAATCAGCTCTACAGTTCAG<br>-A-SE-ISSTVQ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1011<br>337<br>346                                                                                                   |
| E TCTGTGATCAAAACAGGGCGACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT<br>-SVIKTGRLLISHEAPLTGGF-<br>GCATCGGAAATCAGCTCTACAGTCAG<br>-ASEISSTVQ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1011<br>337<br>1038<br>346                                                                                           |
| <pre>B</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1011<br>337<br>1038<br>346<br>1098                                                                                   |
| <pre>B 3000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1011<br>337<br>1038<br>346<br>1098<br>366                                                                            |
| <pre>E rcrgrGarcAAACAGGGCGACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT -SVIKTGRLLISHEAPLTGGF- GCATCGGAAATCAGCTCTACAGTCAG -ASEISSTVQ- F Normal: GAGGAATGTTTCTTGAACCTAGAGGCTCCTATATCAAGAGTATGTGGTTATGACACACCA -EECFLNLEAPISRVCGYDTP- TTTCCTCACATTTTGAACCATCTACAGTCACCACAAATGGAAGTGTTATGACACACCA</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1011<br>337<br>1038<br>346<br>1098<br>366<br>1158                                                                    |
| <pre>E rctgtGatcAAAACAGGGCGACtGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1011<br>337<br>1038<br>346<br>1098<br>366<br>1158<br>386<br>1179                                                     |
| <pre>E TCTGTGGATCAAACAGGGCGACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1011<br>337<br>1038<br>346<br>1098<br>366<br>1158<br>386<br>1179<br>392                                              |
| <pre>E TCTGTGGATCAAAACAGGGCGACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1011<br>337<br>1038<br>346<br>1098<br>366<br>1158<br>386<br>1179<br>392                                              |
| <pre>E</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1011<br>337<br>1038<br>346<br>1098<br>366<br>1158<br>386<br>1179<br>392<br>1098                                      |
| <pre>E</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1011<br>337<br>1038<br>346<br>1098<br>366<br>1158<br>386<br>1179<br>392<br>1098<br>366                               |
| <pre>E</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1011<br>337<br>1038<br>346<br>1158<br>386<br>1179<br>392<br>1098<br>366<br>1159                                      |
| <pre>F rctgtgAtcAAAACAGgGQGACtGctAAtCAGtCACGAGGCtCccttGACAGGCGGCttt<br/>-s-v-i-t-K-T-G-R-L-L-L-I-S-H-E-A-P-L-T-G-G-F-<br/>GCATCGGAAATCAGCtTACAGTCACGAGGCtCctAtAtCAGTAGGGTAtGTGGTATGACACACCA<br/>-A-S-E-I-S-S-T-V-Q-</pre> F Normal:<br>GAGGAATGTTTCTTGAACCTAGAGGCtCctAtAtCAGAGTATGTGGTTATGACACACCA<br>-EEC-F-L-N-L-E-A-P-I-S-R-V-CG-Y-D-T-P-<br>TTTCCTCACATTTTGAACCTAGAGGCtCctAtAtCAGAGTATGTGGTTATGACACACCA<br>-EEC-F-L-N-L-E-A-P-I-S-R-V-C-G-G-Y-D-T-P-<br>TTTCCTCACATTTTGAACCTAGAGGCtCctAtAtCAGAGTATGTGGTTATGACACACCA<br>-EE-C-F-L-N-L-E-A-P-I-S-R-V-C-G-G-Y-D-T-P-<br>Mutant<br>GAGGAATGTTTCTTGAACCTAGAGGCCCTATATCAAGAGTATGTGGTTATGACACACCAT<br>-EEC-F-L-N-L-E-A-L-Y-Q-E-Y-V-V-M-T-H-H-<br>TTCCTCACATTTTGAACCTAGAGGCCCTATATCAAGAGTATGTGGTTATGACACACCAT<br>-EE-C-F-L-N-L-E-A-L-Y-Q-E-Y-V-V-M-T-H-H-<br>TTCCTCACATTTTTGAACCATCTACATCCCAGACAAATGGAAGTGTTATGATGCCCTTC<br>-FL-T-F-L-N-H-S-T-S-Q-T-N-G-S-V-M-M-P-F-<br>GAAAATGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1011<br>337<br>1038<br>346<br>1158<br>386<br>1179<br>392<br>1098<br>366<br>1158<br>386<br>1158<br>386<br>1167        |
| <pre>E</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1011<br>337<br>1038<br>346<br>1158<br>386<br>1179<br>392<br>1098<br>366<br>1158<br>386<br>1158<br>386<br>1167<br>388 |
| <pre>F TCTGTGATCAAAACAGGGCGACTGCTAATCAGTCACGAGGCTCCCTTGACAGGCGGCTTT<br/>-SV-IKT-G-R-L-L-L-I-S-H-EA-P-L-T-G-G-F-<br/>GCATCGGAAATCAGCTCTACAGTTCAG<br/>-AS-E-IS-S-TV-Q-</pre> F Normal:<br>GAGGAATGTTCTTGAACCTAGAGGCTCCTATATCAAGAGTATGTGGGTTATGACACACCA<br>-EEC-F-L-N-L-E-A-P-IS-R-V-C-C-G-Y-D-T-P-<br>TTTCCTCACATTTTGAACCTAGAGGCTCCTATATCAAGAGTATGTGGGTTATGACACACCA<br>-EEC-F-L-N-L-E-A-P-I-S-R-V-C-C-G-Y-D-T-P-<br>TTTCCTCACATTTTGAACCTAGAGGCCCTATATCAAGAGTATGTGGGTTATGACACACCA<br>-RK-M-INY*-<br>Mutant<br>GAGGAATGTTTCTTGAACCTAGAGGGCCCTATATCAAGAGTATGTGGTTATGACACACCAT<br>-EEC-F-L-N-L-E-A-L-Y-Q-E-Y-V-V-V-M-T-H-H-<br>TTCCTCACATTTTGAACCATCTACATCCAGAGGACTGTGGTTATGACACACCAT<br>-EEC-F-L-N-L-E-A-L-Y-Q-E-Y-V-V-V-M-T-H-H-<br>TTCCTCACATTTTGAACCATCTACATCCAGAGAGAGTGTTATGACGCCCTT<br>-FL-T-F-L-N-H-S-T-S-Q-T-N-G-S-V-M-M-P-F-<br>GAAAAA <u>TGA</u><br>-EK*-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1011<br>337<br>1038<br>346<br>1158<br>386<br>1179<br>392<br>1098<br>366<br>1158<br>386<br>1158<br>386<br>1157<br>388 |

Fig. 4.

331–392) thereby perturbing proper E1α–E1β interaction. Family 6 harbored the *BCKDHB* c.970C>T (p.R324X) nonsense mutation generating a PTC located 69 bp upstream of the exon 9–exon 10 junction (Fig. 4E) which is expected to trigger NMD. Similar to the p.R285X mutation, the truncated protein synthesized on residual mutant transcript will be devoid of the C-terminal 68 amino acids and is expected to perturb E1α–E1β interaction. Family 9 harbored the *BCKDHB* c.1065delT mutation located in the last exon (exon 10) resulting in a change in amino acid sequence from position 355 (Fig. 4F) thereby perturbing the residues important for interaction with E1α subunit. The altered reading frame results in a PTC at amino acid position 388 (Fig. 4F).

#### DISCUSSION

This is the first molecular genetic analysis of MSUD from the Indian population. The fact that we identified disease causing mutations in all patients reveals that BCKDHA and BCKDHB could be the major genes causing MSUD in the Indian population. Our results have revealed an approximately equal frequency in the two genes as reported in previous studies [Nellis and Danner, 2001; Flaschker et al., 2007]. In addition, 64% (7/11) of mutations were novel indicating a unique mutation pattern in the Indian population as reported for other genetic disorders [Bashyam et al., 2010, 2012]. The BCKDHA R346 amino acid residue has been shown to be affected previously in MSUD viz. p.R346H [Rodriguez-Pombo et al., 2006] and p.R346C [Park et al., 2011]. The BCKDHA Y438 residue is perhaps the most frequently affected residue in MSUD patients [Brunetti-Pierri et al., 2011; Nellis and Danner, 2001; Henneke et al., 2003]; though it was also incorrectly reported as Y394 [Zhang et al., 1989] and Y393 [Fisher et al., 1991]. Similarly, the BCKDHB R183P mutation was identified in previous studies [Edelmann et al., 2001; Gorzelany et al., 2009] though incorrectly reported as R133P in one [Wynn et al., 2001]. The BCKDHB p.R285X mutation was previously identified from Turkey [Henneke et al., 2003]. The BCKDHB R324X mutation was identified earlier [Edelmann et al., 2001; Nellis et al., 2003] and incorrectly reported as R274X [McConnell et al., 1997]. The BCKDHB S339L mutation was also reported previously [Gorzelany et al., 2009] though incorrectly reported as S289L [Wynn et al., 2001].

Absence of each novel mutation in at least 50 healthy individuals from the local population was confirmed. Mutations occurring in exons 6 and 7 of *BCKDHA* account for about half of all mutations listed in HGMD while all *BCKDHA* mutations detected in this study localized to the 8th and 9th exons and to the 3'-UTR. Similarly, exons 4, 5, and 6 of *BCKDHB* harbor more than 60% of mutations listed in the HGMD, while we identified only one mutation in exon 4, one in exon 5 and rest of the five mutations were detected in exons 8, 9, and 10. Therefore, a majority of mutations identified in this study localize to the C-terminal end of E1 $\alpha$  and E1 $\beta$  resulting probably in disruption of the  $\alpha^2\beta^2$  complex.

Of the 11 mutations identified, four appeared to result in a truncated protein; one in *BCKDHA* and three in *BCKDHB* (Table IIA). Among these, two were nonsense mutations (both in *BCKDHB*) while the other two were single base deletion mutations (one each in the two genes), which generated PTC due to a change in the reading frame. The *BCKDHB* c.853C>T (p.R285X) mutation appeared to induce degradation of the transcript due to NMD (Fig. 4C,D) and the c.970C>T (p.R324X) mutation (Fig. 4F) is also expected to trigger NMD. There is only one previous report of NMD in MSUD, validated in the BCKDHA [Fernandez-Guerra et al., 2010]. The BCKDHA c.1249delC mutation located in the last exon results in addition of 38 amino acids to the C-terminal end of the protein (Fig. 4A). A complex *BCKDHA* mutation located between nucleotide positions 1233 and 1243 was reported earlier to result in addition of 37 extra amino acids at the C-terminus [Rodriguez-Pombo et al., 2006].

In the current study we evaluated nine MSUD patients from India and identified seven novel mutations. The study revealed a high frequency of mutations causing altered protein truncation that perturb the C-termini of E1 $\alpha$  and E1 $\beta$  possibly disrupting E1 assembly. The study is the first step towards identification of mutation spectrum in the Indian population and has important implications for patient management and genetic counseling.

#### ACKNOWLEDGMENTS

We are thankful to all patients, their family members and control subjects for their co-operation in this study. The study was supported by a Core grant from the Department of Biotechnology, Government of India to the Centre for DNA Fingerprinting and Diagnostics. Manjari is thankful to the Council for Scientific and Industrial Research, Govt. of India for a Junior and Senior Research Fellowship. Manjari is a registered Ph.D. student of Manipal University, India. All authors declare no conflict of interest.

#### REFERENCES

Acharya V, Nagarajaram HA. 2012. Hansa: An automated method for discriminating disease and neutral human nsSNPs. Hum Mutat 33:332–337.

Fig. 4. Depiction of effect of nonsense, single base deletion and 3'-UTR mutations. Panel A depicts effect of the *BCKDHA* c.1249delC mutation; both the nucleotide and amino acid sequences are shown. The deleted "C" residue is underlined in the normal sequence. The altered amino acid residues generated due to the deletion are shown in green in the mutant sequence. Panel B depicts effect of the *BCKDHA* c.1561T>A 3'-UTR mutation. The position of the mutated "T" residue (underlined) with respect to the termination codon (TGA, underlined) and the poly A sequence (AATAAA, underlined) is indicated. Panel C depicts effect of the *BCKDHB* c.853C>T mutation; the complete sequence of exon 8 is shown. The mutated "C" residue is underlined; the mutation results in generation of a PTC (TGA) located 99 nucleotides upstream of exon 8–exon 9 junction. Panel D shows the result of quantitative RT–PCR based evaluation of *BCKDHB* transcript level relative to *GAPDH* in RNA isolated from fibroblasts derived from skin biopsy obtained from a normal individual and the proband from family 5 harboring the c.853C>T mutation. The *P* value corresponds to an unpaired *t* test. Panel E depicts the effect of the *BCKDHB* c.970C>T mutation; the mutated "C" residue is underlined. The mutation results in generation of a PTC (TGA) in the 9th exon located 69 nucleotides upstream of exon 9–exon 10 junction. Panel F depicts the effect of the *BCKDHB* c.1065delT mutation; the deleted "T" nucleotide is underlined in the normal sequence. In the mutat sequence, the altered amino acid residues generated due to the deletion are shown in green. The PTC generated eight nucleotides upstream of the authentic termination codon is underlined in the mutat sequence.

Bashyam MD. 2009. Nonsense-mediated decay: Linking a basic cellular process to human disease. Expert Rev Mol Diagn 9:299–303.

Bashyam MD, Bashyam L, Savithri GR, Gopikrishna M, Sangal V, Devi AR. 2004. Molecular genetic analyses of beta-thalassemia in South India reveals rare mutations in the beta-globin gene. J Hum Genet 49:408–413.

Bashyam MD, Chaudhary AK, Reddy EC, Devi AR, Savithri GR, Ratheesh R, Bashyam L, Mahesh E, Sen D, Puri R, Verma IC, Nampoothiri S, Vaidyanathan S, Chandrashekar MD, Kantheti P. 2010. Phenylalanine hydroxylase gene mutations in phenylketonuria patients from India: Identification of novel mutations that affect PAH RNA. Mol Genet Metab 100:96–99.

Bashyam MD, Chaudhary AK, Reddy EC, Reddy V, Acharya V, Nagarajaram HA, Devi AR, Bashyam L, Dalal AB, Gupta N, Kabra M, Agarwal M, Phadke SR, Tainwala R, Kumar R, Hariharan SV. 2012. An Ectodysplasin A receptor (EDAR) founder mutation results in a high frequency of the autosomal recessive form of hypohidrotic ectodermal dysplasia in India. Br J Dermatol 166:819–829.

Brodtkorb E, Strand J, Backe PH, Lund AM, Bjoras M, Rootwelt T, Rootwelt H, Woldseth B, Eide L. 2010. Four novel mutations identified in Norwegian patients result in intermittent maple syrup urine disease when combined with the R301C mutation. Mol Genet Metab 100:324–332.

Brunetti-Pierri N, Lanpher B, Erez A, Ananieva EA, Islam M, Marini JC, Sun Q, Yu C, Hegde M, Li J, Wynn RM, Chuang DT, Hutson S, Lee B. 2011. Phenylbutyrate therapy for maple syrup urine disease. Hum Mol Genet 20:631–640.

Chuang DT, Chuang JL, Wynn RM. 2006. Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr 136:243S-249S.

Danner DJ, Doering CB. 1998. Human mutations affecting branched chain alpha-ketoacid dehydrogenase. Front Biosci 3:d517–d524.

DeLano WL. 2002. Unraveling hot spots in binding interfaces: Progress and challenges. Curr Opin Struct Biol 12:14–20.

Edelmann L, Wasserstein MP, Kornreich R, Sansaricq C, Snyderman SE, Diaz GA. 2001. Maple syrup urine disease: identification and carrier-frequency determination of a novel founder mutation in the Ashkenazi Jewish population. Am J Hum Genet 69:863–868.

Fernandez-Guerra P, Navarrete R, Weisiger K, Desviat LR, Packman S, Ugarte M, Rodriguez-Pombo P. 2010. Functional characterization of the novel intronic nucleotide change c.288+9C>T within the BCKDHA gene: understanding a variant presentation of maple syrup urine disease. J Inherit Metab Dis (in press).

Fisher CR, Fisher CW, Chuang DT, Cox RP. 1991. Occurrence of a Tyr393– Asn (Y393N) mutation in the E1 alpha gene of the branched-chain alpha-keto acid dehydrogenase complex in maple syrup urine disease patients from a Mennonite population. Am J Hum Genet 49:429–434.

Flaschker N, Feyen O, Fend S, Simon E, Schadewaldt P, Wendel U. 2007. Description of the mutations in 15 subjects with variant forms of maple syrup urine disease. J Inherit Metab Dis 30:903–909.

Gorzelany K, Dursun A, Coskun T, Kalkanoglu-Sivri SH, Gokcay GF, Demirkol M, Feyen O, Wendel U. 2009. Molecular genetics of maple syrup urine disease in the Turkish population. Turk J Pediatr 51:97–102.

Henneke M, Flaschker N, Helbling C, Muller M, Schadewaldt P, Gartner J, Wendel U. 2003. Identification of twelve novel mutations in patients with classic and variant forms of maple syrup urine disease. Hum Mutat 22:417.

Li J, Wynn RM, Machius M, Chuang JL, Karthikeyan S, Tomchick DR, Chuang DT. 2004. Cross-talk between thiamin diphosphate binding and phosphorylation loop conformation in human branched-chain alpha-keto acid decarboxylase/dehydrogenase. J Biol Chem 279:32968–32978.

McConnell BB, Burkholder B, Danner DJ. 1997. Two new mutations in the human E1 beta subunit of branched chain alpha-ketoacid dehydrogenase associated with maple syrup urine disease. Biochim Biophys Acta 1361:263– 271.

Nagy E, Maquat LE. 1998. A rule for termination-codon position within intron-containing genes: When nonsense affects RNA abundance. Trends Biochem Sci 23:198–199.

Nellis MM, Danner DJ. 2001. Gene preference in maple syrup urine disease. Am J Hum Genet 68:232–237.

Nellis MM, Kasinski A, Carlson M, Allen R, Schaefer AM, Schwartz EM, Danner DJ. 2003. Relationship of causative genetic mutations in maple syrup urine disease with their clinical expression. Mol Genet Metab 80: 189–195.

Park HD, Lee DH, Hong YH, Kang DH, Lee YK, Song J, Lee SY, Kim JW, Ki CS, Lee YW. 2011. Three Korean patients with maple syrup urine disease: Four novel mutations in the BCKDHA gene. Ann Clin Lab Sci 41:167–173.

Quental S, Macedo-Ribeiro S, Matos R, Vilarinho L, Martins E, Teles EL, Rodrigues E, Diogo L, Garcia P, Eusebio F, Gaspar A, Sequeira S, Furtado F, Lanca I, Amorim A, Prata MJ. 2008. Molecular and structural analyses of maple syrup urine disease and identification of a founder mutation in a Portuguese Gypsy community. Mol Genet Metab 94:148–156.

Rodriguez-Pombo P, Navarrete R, Merinero B, Gomez-Puertas P, Ugarte M. 2006. Mutational spectrum of maple syrup urine disease in Spain. Hum Mutat 27:715.

Snyderman SE, Norton PM, Roitman E, Holt LE Jr. 1964. Maple syrup urine disease, with particular reference to dietotherapy. Pediatrics 34: 454–472.

Wynn RM, Chuang JL, Sansaricq C, Mandel H, Chuang DT. 2001. Biochemical basis of type IB (E1beta) mutations in maple syrup urine disease. A prevalent allele in patients from the Druze kindred in Israel. J Biol Chem 276:36550–36556.

Zhang B, Edenberg HJ, Crabb DW, Harris RA. 1989. Evidence for both a regulatory mutation and a structural mutation in a family with maple syrup urine disease. J Clin Invest 83:1425–1429.